COMP3151/9154

Foundations of Concurrency

Distributed Algorithms

Johannes Åman Pohjola
UNSW
Term 2 2021
Where we’re at

We’ve concluded our coverage of proof methods, and dipped our toes into process algebra.

This week, we’ll discuss some classic distributed algorithms.

First up though...
Exam info

The final exam will start on August 24 8AM–August 25 8AM.

It’s a 3–4h exam with a 24h timing window. This means you control your own scheduling: break for lunch, go to the beach, sleep on it and try again in the morning...

I’ll email you the exam papers when the exam starts. Submission is via give, same as homework and assignments.

I’ll talk about the content of the exam in Week 10.
Parallel Distributed Execution

- P
- P’
- Q
- R

CPU
L1 Cache
L2 Cache
Main Memory

network
Parallel Distributed Execution

Computation can be distributed over several *nodes* (or *locations*). Communication between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous message passing with possible reordering of messages.
Parallel Distributed Execution

Computation can be distributed over several *nodes* (or *locations*). Communication between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous message passing with possible reordering of messages.

Locally, each node may run several *processes*. Processes on the same node communicate via shared memory.
Parallel Distributed Execution

Computation can be distributed over several nodes (or locations). Communication between nodes uses message passing. Ben-Ari’s basic model is: reliable asynchronous message passing with possible reordering of messages.

Locally, each node may run several processes. Processes on the same node communicate via shared memory.

NB

For convenience, we will generally assume that all local computation at a node is executed atomically. (We know how to do that already.) “In particular, when a message is received the handling of the message is considered part of the same atomic statement.” - Ben-Ari
Sending and Receiving Messages

send(tag, destination, [parameters])
receive(tag, [parameters])

Senders are anonymous by default. Messages can be chosen based on pattern matching on the tag.
Sending a Message and Expecting a Reply

Senders can reveal their identity by passing their ID as a parameter. (But how do we know they’re not lying?)
Imagine a dumb peripheral such as an old printer on a network. The other nodes need to sort out mutually exclusive access, to avoid printing interleaved text.

This is easy if we nominate one central node as sole arbiter of who gets access. But in distributed systems, symmetric solutions, where no one node is indispensable, are preferred.
Algorithm 2.1: Ricart-Agrawala algorithm (outline)

```
integer myNum ← 0, set of node IDs deferred ← ∅

main
p1: non-critical section
p2: myNum ← chooseNumber
p3: for all other nodes N
p4:    send(request, N, myID, myNum)
p5:    await replies from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8:    remove N from deferred
p9:    send(reply, N, myID)

receive
integer source, reqNum
p10: receive(request, source, reqNum)
p11: if reqNum < myNum
p12:    send(reply, source, myID)
p13: else add source to deferred
```
RA Algorithm (1)
RA Algorithm (2)
Virtual Queue in the RA Algorithm

Becky → Aaron → Chloe
RA Algorithm (3)

![Image of a diagram showing the RA Algorithm (3)]
RA Algorithm (4)
There are three distinct problems with the RA algorithm sketch:

- **deadlock** when equal ticket numbers are chosen
- ¬**mutex** when low numbers are chosen later
- **deadlock** when nodes retire
Equal Ticket Numbers
Equal Ticket Numbers

- Becky: 5
- Aaron: 5
- Becky: 5
- Aaron: 5

Standard fix: (ab)use process IDs to break ties e.g. by using `<lex` on number/process ID pairs rather than `<` in line p11.
Equal Ticket Numbers

Becky 5
Aaron

Aaron 5
Becky

deadlock
Equal Ticket Numbers

Becky 5
Aaron

Aaron 5
Becky

deadlock

Standard fix: (ab)use process IDs to break ties eg by using $<_{\text{lex}}$ on number/process ID pairs rather than $<$ in line p11.
Choosing Ticket Numbers

- Becky: 5
- Aaron: 10
Choosing Ticket Numbers

Becky 5 reply
Aaron

Aaron 10
Choosing Ticket Numbers

Becky • 5
Aaron

Aaron • 10
Choosing Ticket Numbers

- Becky: 5
- Aaron: 10

(reply)
Choosing Ticket Numbers

Becky

Aaron • 10
Choosing Ticket Numbers

Becky 8

Aaron 10
Choosing Ticket Numbers

Becky 8

req

Aaron 10
Choosing Ticket Numbers

Becky 8

reply

Aaron 10
Choosing Ticket Numbers

Becky • 8

Aaron • 10
Choosing Ticket Numbers

Standard fix: keep track of highest seen ticket number; choose higher than that in line p2.
Quiescent Nodes
Quiescent Nodes

Becky 5

Aaron (zzz) 0

Becky
Quiescent Nodes

Standard fix: have an *intent* flag; ignore ticket number in the absence of intent (line p11).
Algorithm 2.2: Ricart-Agrawala algorithm

integer myNum ← 0
set of node IDs deferred ← ∅
integer highestNum ← 0
boolean requestCS ← false

Main

loop forever
p1: non-critical section
p2: requestCS ← true
p3: myNum ← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)

p6: await replies from all other nodes
p7: critical section
p8: requestCS ← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)
Algorithm 2.2: Ricart-Agrawala algorithm (continued)

Receive

integer source, requestedNum
loop forever
p1: receive(request, source, requestedNum)
p2: highestNum ← max(highestNum, requestedNum)
p3: if not requestCS or (requestedNum, source) <_{\text{lex}} (myNum, myID)
p4: send(reply, source, myID)
p5: else add source to deferred
Correctness of RA

We show mutual exclusion and eventual entry. For mutual exclusion, suppose nodes i and k are in the CS; we distinguish 3 cases of when their ticket numbers, $myNum_i$ and $myNum_k$ were last chosen:

- **Case 1:** node k chose $myNum_k$ after replying to i
- **Case 2:** node i chose $myNum_i$ after replying to k (symmetric)
- **Case 3:** nodes i and k chose $myNum_i$ and $myNum_k$ before replying
Mutual Exclusion, Case 1

Happens-before diagram based on local order and receive-after-send causality in this case:

- \(i \) choose → send request → \(k \) receive request → reply → choose

\(myNum_k \) must be greater than \(myNum_i \) hence \(i \) won’t reply before leaving the CS.
Mutual Exclusion, Case 3

\[i \text{ main} \quad \text{choose} \rightarrow \text{send request} \]

\[i \text{ receive} \]

\[k \text{ main} \quad \text{choose} \rightarrow \text{send request} \]

\[k \text{ receive} \]

\[\leq_{\text{lex}} \text{ is a total order and both } i \text{ and } k \text{ have requestCS} = \text{true}, \text{ hence one of them must defer its reply.} \]
Alternative proof

This informal proof was based on *behavioural reasoning*: a style of argumentation that tends to go “if this happened then that must have happened”.

If you find such proofs a bit dodgy (in which case you’re in good company), there’s a proper formal invariant proof here:

Suppose node i wants to enter the CS. It will eventually progress until it’s stuck in p6, waiting for replies.

Its request messages will eventually arrive at all other nodes, making them aware of $myNum_i$. Thus, the others subsequently choose higher numbers.

As usual, nodes can only fall asleep in the non-CS, so all those ahead of i in the virtual queue must eventually enter their CS and leave it, too.
Suppose node i wants to enter the CS. It will eventually progress until it’s stuck in p6, waiting for replies.

Its request messages will eventually arrive at all other nodes, making them aware of $myNum_i$. Thus, the others subsequently choose higher numbers.

As usual, nodes can only fall asleep in the non-CS, so all those ahead of i in the virtual queue must eventually enter their CS and leave it, too.
Channels in RA (Promela)

Every node has a single channel for receiving messages; all senders share it.

RA promela code available on the course website.
Ricart-Agrawala works (mutex, dlf, starvation-freedom) but exchanges $2(n + 1)$ messages per CS access, even in the absence of contention.

Idea: have 1 token in the system; pass it around as a right to enter CS. We expect:

mutual exclusion: trivial
absence of unnecessary delay: trivial
deadlock-freedom: maybe
starvation-freedom: maybe not
Algorithm 2.3: Ricart-Agrawala token-passing algorithm

```plaintext
boolean haveToken ← true in node 0, false in others
integer array[NODES] requested ← [0, ..., 0]
integer array[NODES] granted ← [0, ..., 0]
integer myNum ← 0
boolean inCS ← false

sendToken
  if ∃ N. requested[N] > granted[N]
    for some such N
      send(token, N, granted)
      haveToken ← false
```

(Algorithm 2.3: Ricart-Agrawala token-passing algorithm)
boolean haveToken ← true in node 0, false in others
integer array[NODES] requested ← [0,...,0]
integer array[NODES] granted ← [0,...,0]
integer myNum ← 0
boolean inCS ← false

sendToken
 if ∃ N. requested[N] > granted[N]
 for some such N
 send(token, N, granted)
 haveToken ← false
Algorithm 2.3: Ricart-Agrawala token-passing algorithm (continued)

Main

loop forever

p1: non-critical section
p2: if not haveToken
p3: myNum ← myNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)

p6: receive(token, granted)

p7: haveToken ← true
p8: inCS ← true
p9: critical section
p10: granted[myID] ← myNum
p11: inCS ← false
p12: sendToken
Algorithm 2.3: Ricart-Agrawala token-passing algorithm (continued)

Receive

p13:	receive(request, source, reqNum)
p14:	requested[source] ← max(requested[source], reqNum)
p15:	if haveToken and not inCS
p16:	sendToken
Data Structures for RA Token-Passing Algorithm

“granted” = last ticket numbers when entering CS (accurate at token owner)
“requested” = last known ticket numbers

Example (Chloe’s view)

<table>
<thead>
<tr>
<th></th>
<th>Aaron</th>
<th>Becky</th>
<th>Chloe</th>
<th>Danielle</th>
<th>Evan</th>
</tr>
</thead>
<tbody>
<tr>
<td>requested</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>granted</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
RA Token-Passing Algorithm Properties

Only 1 token in the system \implies mutex.
Requests being delivered eventually \implies dlf.
Arbitrary choice of token recipient in sendToken \implies potential starvation.
RA Token-Passing Algorithm Properties

Only 1 token in the system \implies mutex.
Requests being delivered eventually \implies dlf.
Arbitrary choice of token recipient in `sendToken' \implies potential starvation.

Potential fix: choose lowest “granted” value among those i with granted\(_i\) < requested\(_i\) as token recipient in `sendToken`.
RA Token-Passing Algorithm Properties

Only 1 token in the system \Rightarrow mutex.
Requests being delivered eventually \Rightarrow dlf.
Arbitrary choice of token recipient in sendToken \Rightarrow potential starvation.

Potential fix: choose lowest “granted” value among those i with $\text{granted}[i] < \text{requested}[i]$ as token recipient in sendToken.

Remaining problem: messages are big. Still inefficient for larger N.
Neilsen-Mizuno Algorithm

Idea: pass a token in a set of virtual trees; initially: root of a spanning tree of the system = token holder; requests are sent to the parent node; parenthood is surrendered (new root of a tree, but no token yet) parents relay requests from children; parenthood switched to the sender of the relayed message token holder in CS defers the first request until outside CS; parenthood switched to the first sender; later requests relayed as usual
Distributed System for Neilsen-Mizuno Algorithm

Diagram showing connections between Danielle, Evan, Chloe, Aaron, and Becky.
Spanning Tree in Neilsen-Mizuno Algorithm
Neilsen-Mizuno Algorithm (1)

Aaron → Becky → Chloe ← Danielle ← Evan

Becky changes parent
Neilsen-Mizuno Algorithm (1)

(request, Aaron, Aaron)

Aaron ➔ Becky ➔ Chloe ➔ Danielle ➔ Evan
Neilsen-Mizuno Algorithm (1)

(request, Aaron, Aaron)
Neilsen-Mizuno Algorithm (1)

(request, Aaron, Aaron)

Aaron → Becky → Chloe → Danielle → Evan

(request, Becky, Aaron)

Aaron → Becky → Chloe → Danielle → Evan
Neilsen-Mizuno Algorithm (1)

(request, Aaron, Aaron)

Aaronn → Becky → Chloe → Danielle → Evan

(request, Becky, Aaron)

Aaron → Becky → Chloe → Danielle → Evan

Becky changes parent

Aaronn → Becky → Chloe → Danielle → Evan
Neilsen-Mizuno Algorithm (2)
Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron Becky Chloe Danielle Evan
Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Aaron → Becky

Aaron → Becky

Evan
Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Evan wants to enter the CS; request messages bubble up to Aaron
Neilsen-Mizuno Algorithm (2)

Chloe: still in CS

Evan wants to enter the CS; request messages bubble up to Aaron
Neilsen-Mizuno Algorithm (3)
Neilsen-Mizuno Algorithm (3)

(token)
Neilsen-Mizuno Algorithm (3)
Neilsen-Mizuno Algorithm (3)
Neilsen-Mizuno Algorithm (3)
Algorithm 2.4: Neilsen-Mizuno token-passing algorithm

<table>
<thead>
<tr>
<th>line</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer parent ← (initialized to form a tree)</td>
<td></td>
</tr>
<tr>
<td>integer deferred ← 0</td>
<td></td>
</tr>
<tr>
<td>boolean holding ← true in the root, false in others</td>
<td></td>
</tr>
</tbody>
</table>

Main

<table>
<thead>
<tr>
<th>line</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loop forever</td>
<td>loop forever</td>
</tr>
<tr>
<td>p1:</td>
<td>non-critical section</td>
</tr>
<tr>
<td>p2:</td>
<td>if not holding</td>
</tr>
<tr>
<td>p3:</td>
<td>send(request, parent, myID, myID)</td>
</tr>
<tr>
<td>p4:</td>
<td>parent ← 0</td>
</tr>
<tr>
<td>p5:</td>
<td>receive(token)</td>
</tr>
<tr>
<td>p6:</td>
<td>holding ← false</td>
</tr>
<tr>
<td>p7:</td>
<td>critical section</td>
</tr>
<tr>
<td>p8:</td>
<td>if deferred ≠ 0</td>
</tr>
<tr>
<td>p9:</td>
<td>send(token, deferred)</td>
</tr>
<tr>
<td>p10:</td>
<td>deferred ← 0</td>
</tr>
<tr>
<td>p11:</td>
<td>else holding ← true</td>
</tr>
<tr>
<td>Line</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Receive</td>
<td>integer source, originator</td>
</tr>
<tr>
<td>p12:</td>
<td>loop forever</td>
</tr>
<tr>
<td>p12:</td>
<td>receive(request, source, originator)</td>
</tr>
<tr>
<td>p13:</td>
<td>if parent = 0</td>
</tr>
<tr>
<td>p14:</td>
<td>if holding</td>
</tr>
<tr>
<td>p15:</td>
<td>send(token, originator)</td>
</tr>
<tr>
<td>p16:</td>
<td>holding ← false</td>
</tr>
<tr>
<td>p17:</td>
<td>else deferred ← originator</td>
</tr>
<tr>
<td>p18:</td>
<td>else send(request, parent, myID, originator)</td>
</tr>
<tr>
<td>p19:</td>
<td>parent ← source</td>
</tr>
</tbody>
</table>
Neilsen-Mizuno: Correctness

Mutual exclusion is trivial: there’s only ever one token. The original paper has (informal, behavioural) proofs of deadlock and starvation freedom:

What now?

More distributed algorithms!

Also, Assignment 2 is out. Have a look as soon as possible!