
Admin Concurrency Appreciation Reasoning and Semantics Bonus

Course Introduction, Concurrent Semantics
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Who are we?

I am Johannes Åman Pohjola. I will be the lecturer and course convenor.

Raphael Douglas Giles is the tutor. He will be grading your homework.

Most of the material for this course was developed by its previous lecturers: Liam
O’Connor, Vladimir Tosic, and Kai Engelhardt. Mistakes are mine :)
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Contacting Us

http://www.cse.unsw.edu.au/~cs3151

Forum

There is an Ed forum. Questions about course content should typically be asked there.
You can ask private questions, to avoid spoiling solutions to other students.

Administrative questions should be sent to cs3151@cse.unsw.edu.au.
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What do we expect?

Maths

This course uses a significant amount of discrete mathematics. You will need to be
reasonably comfortable with logic, set theory and proof. MATH1081 ought to be
sufficient, but experience shows this is not always so. There is a math resources
subsection of the website if you feel yourself falling behind in this area. We will do our
best to support you.

Programming

We expect you to be familiar with imperative programming languages like Java or C.
Course assignments may require some programming in modelling languages, as well as
Java.
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Assessment

Homework (10%) One for every week of teaching (except Week 10). Either
theoretical (requiring answers on a page) or practical (requiring
programming or modelling).

Assignments (40%) One smaller warmup assignment, and two major assignments.
Major assignments are supposed to be done in pairs. Please try to
organise this as soon as you can.

Exam (50% + pass hurdle) Online exam.

The full assessment breakdown is on the course website.
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Lectures

Lectures are on Wednesdays at 4PM in Law Theatre G23 (K-F8-G23), and Fridays at
11AM in Law Theatre G02 (K-F8-G02).
You can also participate remotely via Zoom.

Lecture recordings should pop up on Echo360.

8



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Textbook

While we draw on a number of other sources. The one we draw the most from is
Mordechai Ben-Ari’s Principles of Concurrent and Distributed Programming. This
book can be ordered from the campus bookshop at a ludicrous price. Other vendors
are not much better.

Copyright Infringement

I have been told that copyright infringement has occurred and that the textbook is
being freely made available on a website called Library Genesis, a site accessible via a
mere Google search.
I do not condone copyright infringement.
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Dining Cryptographers Problem

Three cryptographers are sitting down to dinner at their favorite three-star restaurant.
Their waiter informs them that arrangements have been made with the mâıtre d’hôtel
for the bill to be paid anonymously. One of the cryptographers might be paying for the
dinner, or it might have been NSA (U.S. National Security Agency). The three
cryptographers respect each other’s right to make an anonymous payment, but they
wonder if NSA is paying.
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Dining Cryptographers

Procedure

1 Each Ci flips a coin.

2 Each Ci tells what they
tossed only to their right.

3 Each Ci announces if the
two coin tosses are equal
unless they paid.

4 An even number of “diff.”
means the NSA paid.

5 An odd number of “diff.”
means one of the Ci paid.

C1 C3

C2

C1 C3

C2

Your dinner has been paid for by a party
who wishes to remain anonymous.

C1 C3

C2

Was it one
of us?

C1 C3

C2

…or the
NSA?

C1 C3

C2

C1 C3

C2

C
1 C3

C 2

Tails

1. Each Ci tells only his right
neighbour what he tossed.

C1 C3

C2

2. Each Ci announces whether the two
coin tosses are equal – unless he paid.

C1 C3

C2

3. An even number of “diff.” indicates
the NSA paid.

equaldiff. diff.
C1 C3

C2

3. An odd number of “diff.” indicates
one of the Ci paid.

equaldiff. equal
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Questions

Does it work?

Why does it work?

Is it useful?
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Definitions

Definition

Concurrency is an abstraction for the programmer, allowing programs to be structured
as multiple threads of control, called processes. These processes may communicate in
various ways.

Example Applications: Servers, OS Kernels, GUI applications.

Anti-definition

Concurrency is not parallelism, which is a means to exploit multiprocessing hardware in
order to improve performance. However, parallel hardware can be used to support
concurrent applications.
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Sequential vs Concurrent
We could consider a sequential program (a process or thread) as a sequence (or total
order) of actions:

• • • • • • · · ·

The ordering here is “happens before”. For example, processor instructions:

LD R0,X LDI R1,5 ADD R0,R1 ST X,R0

A concurrent program is not a total order but a partial order.

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

This means that there are now multiple possible interleavings of these actions — our
program is non-deterministic where the interleaving is left to the execution model.
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Multithreaded Execution

P Q R

CPU

L1 Cache

L2 Cache

Main Memory
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Parallel Multiprocessor Execution

P Q R

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

CPU

L1 Cache

L2 Cache

bus/crossbar

Main Memory
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Parallel Distributed Execution

P Q R

CPU

L1 Cache

L2 Cache

Main Memory

CPU

L1 Cache

L2 Cache

Main Memory

CPU

L1 Cache

L2 Cache

Main Memory

network
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Synchronisation

Regardless of the execution model, processes need to communicate to organise and
co-ordinate their actions.

Types of Communication

Shared Variables Typically on single-computer execution models.

Message-Passing Typically on distributed execution models.

This communication introduces new constraints on the possible interleavings:

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

The red arrows are called synchronisations.

32



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Synchronisation

Regardless of the execution model, processes need to communicate to organise and
co-ordinate their actions.

Types of Communication

Shared Variables Typically on single-computer execution models.

Message-Passing Typically on distributed execution models.

This communication introduces new constraints on the possible interleavings:

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

The red arrows are called synchronisations.

33



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Synchronisation

Regardless of the execution model, processes need to communicate to organise and
co-ordinate their actions.

Types of Communication

Shared Variables Typically on single-computer execution models.

Message-Passing Typically on distributed execution models.

This communication introduces new constraints on the possible interleavings:

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

The red arrows are called synchronisations.

34



Admin Concurrency Appreciation Reasoning and Semantics Bonus

In a nutshell
This course is about the three R’s of concurrent programming:

1 Reading concurrent code and programming idioms in a variety of execution
contexts.

2 wRiting concurrent software using various abstractions for synchronisation.

3 Reasoning about concurrent systems with formal proof and automatic analysis
tools.

Why Reasoning?

a.k.a. why all the maths?

It’s simply not feasible to test concurrent systems with standard methods. We need a
way to rigorously analyse our software when running it no longer provides a reasonable
indication of correctness.

We will learn more about this next lecture.
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Reasoning
Sequential program reasoning (COMP2111,COMP6721) is usually done with a proof
calculus like Hoare Logic.

{ϕ} P {ψ}

This notation means that if the program P starts in a state satisfying the pre-condition
ϕ and it terminates, it will end in a state satisfying the post-condition ψ.

Semantics

Consider each action as a function from state to state Σ→ Σ. Then the semantics or
meaning of a sequential program JPK is the composition of all the functions in the
sequence. Then the above Hoare triple actually means:

∀s ∈ Σ. ϕ(s)⇒ ψ(JPK(s))

Note that we only care about the initial and final states here.
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Concurrent Programs

Consider the following concurrent processes, sharing a variable n.

var n := 0

p1: var x := n; q1: var y := n; r1: var z := n;
p2: n := x + 1; q2: n := y − 1; r2: n := z + 1;

Question

What are the possible final values of n?

We can’t just look at the initial and final states from each process!
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Semantics for Concurrency

For concurrency, just initial and final states aren’t enough. We have to worry about all
intermediate states as well.

Many concurrent systems never terminate, but instead run forever waiting for new
requests (e.g. a server). So there may not be any final state!

Behaviours

A behaviour is an infinite sequence of states, i.e. Σω.
Note we don’t record what actions have taken place, only the effects they have on the
state (variables, program counters etc.).
If a process terminates, we consider the final state to repeat infinitely.

46



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Semantics for Concurrency

For concurrency, just initial and final states aren’t enough. We have to worry about all
intermediate states as well.
Many concurrent systems never terminate, but instead run forever waiting for new
requests (e.g. a server). So there may not be any final state!

Behaviours

A behaviour is an infinite sequence of states, i.e. Σω.
Note we don’t record what actions have taken place, only the effects they have on the
state (variables, program counters etc.).
If a process terminates, we consider the final state to repeat infinitely.

47



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Semantics for Concurrency

For concurrency, just initial and final states aren’t enough. We have to worry about all
intermediate states as well.
Many concurrent systems never terminate, but instead run forever waiting for new
requests (e.g. a server). So there may not be any final state!

Behaviours

A behaviour is an infinite sequence of states, i.e. Σω.
Note we don’t record what actions have taken place, only the effects they have on the
state (variables, program counters etc.).
If a process terminates, we consider the final state to repeat infinitely.

48



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Semantics and Specifications

A better semantics for a concurrent program JPK is the set of all possible behaviours
from all the different available interleavings of actions.

Specs

Preconditions and postconditions don’t work for behaviours – there’s no final state!

We want to specify systems with (linear) temporal properties like

”Two processes never access the same shared resource simultaneously”

Or:

”If a server accepts a request, it will eventually respond”

These are examples of safety and liveness properties, respectively.
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Semantics and Specifications

If we consider a property to be a set of behaviours, then a program P meets a
specification property S iff:

JPK ⊆ S

This works for correctness properties like the ones we’ve seen, but not for security
properties or real-time properties.

Example (Security Properties)

In the Dining Cryptographers, we desire confidentiality of who paid.
If all coins were known to always land heads-up, then this property is violated.However
this variant of a problem has a subset of the behaviours of the original one.
Therefore, we cannot construct a specification S that is satisfied by the original
scenario, but not by our non-confidential one.
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Internal vs. External State
We often wish to distinguish between state that is observable from outside (e.g. shared
variables) and state that is not (e.g. local variables).

Example (Dining Cryptographers)

In the dining cryptographers problem, the internal state might be the value of the
coins, and the external state might be what the cryptographers say.

If we abstract away from all internal state, actions that only affect internal state will
appear not to change the state at all.

• • • • • • • • · · ·
⇓

• • • • • • • • · · ·
This kind of (finite) repetition of the same state is called stuttering. We generally
don’t want properties to distinguish behaviours that are equivalent modulo stuttering.
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Cantor’s Uncountability Argument
Result

It is impossible in general to enumerate the space of all behaviours.

σ0 =

σ1 =

σ2 =

σ3 =

σ4 =
...

...
...

...
...

• • • • • · · ·
• • • • • · · ·
• • • • • · · ·
• • • • • · · ·
• • • • • · · ·

σδ = • • • • • · · ·
Proof

Suppose there exists a set of behaviours
σ0, σ1, σ2, . . . that enumerates all
behaviours.

Then we can construct a delightfully
devilish behaviour σδ that differs from
any σi at the ith position, and thus is
not in our sequence.

Contradiction!
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Properties

Recall

A linear temporal property is a set of behaviours.

1 A safety property states that something bad does not happen. For example:

I will never run out of money.

These are properties that may be violated by a finite prefix of a behaviour.

2 A liveness property states that something good will happen. For example:

If I start drinking now, eventually I will be smashed.

These are properties that can always be satisfied eventually.
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Properties Examples

Are they safety or liveness?

When I come home, there must be beer in the fridge

– Safety

When I come home, I’ll drop on the couch and drink a beer – Liveness

I’ll be home later – Liveness

The program never allocates more than 100MB of memory — Safety

The program will allocate at least 100MB of memory – Liveness

No two processes are simultaneously in their critical section — Safety

If a process wishes to enter its critical section, it will eventually be allowed to do
so – Liveness

Now let’s try to mathematically formalise what it means for a property to be safety or
liveness.
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Limits

If σ is a behaviour, we write σ|k to denote the prefix of σ comprising its first k states.

Definition (Limit closure)

The limit closure of a set A ⊆ Σω, denoted A, is defined as follows:

A = {σ ∈ Σω | ∀n ∈ N. ∃σ′ ∈ A. σ|n = σ′|n}

In words: a behaviour σ is in A if every finite prefix of σ is also a prefix of some
behaviour in A.
Intuitively: A is all behaviours that cannot be distinguished from behaviours in A by
making finite observations.
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Limits

Example

What is ∅?

Example

Let Σ = {0, 1}, and let A be the set of all behaviours that start with a finite number of
0:s, followed by infinitely many 1:s. What is A?
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Limits

Definition (Limit closed sets)

A set A of behaviours is limit closed if A = A.

Definition (Dense sets)

A set A is called dense if A = Σω i.e. the closure is the space of all behaviours.
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Safety Properties are Limit Closed

Let P be a safety property.

Assume that there exists a behaviour σω ∈ P such that σω /∈ P.

For σω to violate the safety property P, there must be a specific state in σω where
shit hit the fan.That is, there must be a specific k such that any behaviour with
the prefix σω|k is not in P.

Since σω ∈ P, there must be a behaviour σ ∈ P such that σω|k = σ|k .

Thus, σ both violates and satisfies the property P.

Contradiction.
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Liveness Properties are Dense

Let P be a liveness property. We want to show that P contains all behaviours. Let σ
be a behaviour.

If σ ∈ P, then σ ∈ P, because P ⊆ P.

If σ /∈ P:

σ must not “do the right thing eventually”, i.e. no finite prefix of σ ever fulfills the
promise of the liveness property.
However, every finite prefix σ|i of σ could be extended differently with some ρi such
that σ|iρi is in P again.
In other words, every finite prefix of σ is a prefix of some behaviour in P.
Thus, by definition, σ ∈ P.

89



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Liveness Properties are Dense

Let P be a liveness property. We want to show that P contains all behaviours. Let σ
be a behaviour.

If σ ∈ P,

then σ ∈ P, because P ⊆ P.

If σ /∈ P:

σ must not “do the right thing eventually”, i.e. no finite prefix of σ ever fulfills the
promise of the liveness property.
However, every finite prefix σ|i of σ could be extended differently with some ρi such
that σ|iρi is in P again.
In other words, every finite prefix of σ is a prefix of some behaviour in P.
Thus, by definition, σ ∈ P.

90



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Liveness Properties are Dense

Let P be a liveness property. We want to show that P contains all behaviours. Let σ
be a behaviour.

If σ ∈ P, then σ ∈ P, because P ⊆ P.

If σ /∈ P:

σ must not “do the right thing eventually”, i.e. no finite prefix of σ ever fulfills the
promise of the liveness property.

However, every finite prefix σ|i of σ could be extended differently with some ρi such
that σ|iρi is in P again.
In other words, every finite prefix of σ is a prefix of some behaviour in P.
Thus, by definition, σ ∈ P.

91



Admin Concurrency Appreciation Reasoning and Semantics Bonus

Liveness Properties are Dense
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The Big Result

Alpern and Schneider’s Theorem

Every property is the intersection of a safety and a liveness property

P = P ∩ Σω \ (P \ P)

denseclosed

Why are these two components closed and dense? Also, let’s do the set theory
reasoning to show this equality holds.

This is very significant, it gives us a separation of concerns: a concurrent program
suggests correct actions (safety) and a scheduler chooses which actions to take
(liveness).
Also, safety and liveness require different proof techniques.
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Decomposing Safety and Liveness

Let’s break these up into their safety and liveness components.

The program will stay in state s1 for a while, then go to state s2 and stay there
forever.

The program will allocate exactly 100MB of memory.

If given an invalid input, the program will return the value -1.

The program will sort the input list.
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Something to think about.

var n := 0

p0: do 10 times: q0: do 10 times:
p1: var x := n; q1: var y := n;
p2: x := x + 1; q2: y := y + 1;
p3: n := x ; q3: n := y ;
p4: od q5: od

Question

What are the possible final values of n?
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Bonus Topological Detour

The following slides are non-examinable bonus material.

It’s an alternative way of defining limit closures by drawing on a topological
characterisation of Σω. We won’t need this for the course, so feel free to skip, and
don’t worry if you find it challenging.
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Metric for Behaviours

We define the distance d(σ, ρ) ∈ R≥0 between two behaviours σ and ρ as follows:

d(σ, ρ) = 2−sup{ i∈N | σ|i=ρ|i}

Where σ|i is the first i states of σ and 2−∞ = 0.
Intuitively, we consider two behaviours to be close if there is a long prefix for which
they agree.

Observations

d(x , y) = 0⇔ x = y

d(x , y) = d(y , x)

d(x , z) ≤ d(x , y) + d(y , z)

This forms a metric space and thus a topology on behaviours.
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Topology

Definition

A set S of subsets of U is called a topology if it contains ∅ and U, and is closed under
union and finite intersection. Elements of S are called open and complements of open
sets are called closed.

Example (Sierpiński Space)

Let U = {0, 1} and S = {∅, {1},U}.

Questions

What are the closed sets of the Sierpiński space?

Can a set be clopen i.e. both open and closed?
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Topology for Metric Spaces

Our metric space can be viewed as a topology by defining our open sets as (unions of)
open balls:

B(σ, r) = { ρ | d(σ, ρ) < r }

This is analogous to open and closed ranges of numbers.

Why do we care?

Viewing behaviours as part of a metric space gives us notions of limits, convergence,
density and many other mathematical tools.
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Limits and Boundaries

Consider a sequence of behaviours σ0σ1σ2 . . . . The behaviour σω is called a limit of
this sequence if the sequence converges to σω, i.e. for any positive ε:

∃n. ∀i ≥ n. d(σi , σω) < ε

The limit-closure or closure of a set A, written A, is the set of all the limits of
sequences in A.

Question

Is A ⊆ A?

A set A is called limit-closed if A = A. It is easy (but not relevant) to prove that
limit-closed sets and closed sets are the same.
A set A is called dense if A = Σω i.e. the closure is the space of all behaviours.
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