1

Owicki-Gries Method

Invariants and Machine Instructions

Shared Variable Proof Methods, Hardware-Assisted Critical Sections

Johannes Åman Pohjola CSE, UNSW Term 2 2022

Owicki-Gries Method

Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of critical section solutions, and some solutions for two processes.

Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of critical section solutions, and some solutions for two processes.

We also introduced the SPIN model checking tool for rigorous analysis of candidate solutions.

Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of critical section solutions, and some solutions for two processes.

We also introduced the SPIN model checking tool for rigorous analysis of candidate solutions.

In this lecture, we will introduce a formal proof method for verifying safety properties, and apply it to a new kind of critical section solution that relies on hardware support.

Owicki-Gries Method

Invariants and Machine Instructions

Transition Diagrams

Definition		

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- *L* is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- *L* is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

$$i \leftarrow 0;$$

 $s \leftarrow 0;$
while $i \neq N$ do
 $s \leftarrow s + i;$
 $i \leftarrow i + 1$
od

Invariants and Machine Instructions

ln

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

$$i \leftarrow 0;$$

 $s \leftarrow 0;$
while $i \neq N$ do
 $s \leftarrow s + i;$
 $i \leftarrow i + 1$
od

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

$$i \leftarrow 0;$$

 $s \leftarrow 0;$
while $i \neq N$ do
 $s \leftarrow s + i;$
 $i \leftarrow i + 1$
od

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

$$i \leftarrow 0;$$

$$s \leftarrow 0;$$

while $i \neq N$ do

$$s \leftarrow s + i;$$

$$i \leftarrow i + 1$$

od

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- *T* is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

Invariants and Machine Instructions

Transition Diagrams

Definition

A *transition diagram* is a tuple (L, T, s, t) where:

- L is a set of *locations* (program counter values).
- $s \in L$ is a *entry location*.
- $t \in L$ is a *exit location*.
- T is a set of *transitions*.

- ℓ_i and ℓ_j are locations.
- g is a guard $\Sigma \to \mathbb{B}$
- f is a state update $\Sigma \to \Sigma$.

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} ~P~\{\psi\}$

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} ~P~\{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy $\psi.$

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} \ P \ \{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy ψ . Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L, T, s, t):

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} \ P \ \{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy ψ . Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L, T, s, t):

4 Associate with each location $\ell \in L$ an assertion $\mathcal{Q}(\ell) : \Sigma \to \mathbb{B}$.

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} \ P \ \{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy ψ . Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L, T, s, t):

1 Associate with each location $\ell \in L$ an assertion $\mathcal{Q}(\ell) : \Sigma \to \mathbb{B}$.

2 Prove that this assertion network is *inductive*, that is: For each transition in T $\ell_i \xrightarrow{g;f} \ell_j$ show that:

 $\mathcal{Q}(\ell_i) \wedge g \Rightarrow \mathcal{Q}(\ell_j) \circ f$

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} \ P \ \{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy ψ . Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L, T, s, t):

4 Associate with each location $\ell \in L$ an assertion $\mathcal{Q}(\ell) : \Sigma \to \mathbb{B}$.

2 Prove that this assertion network is *inductive*, that is: For each transition in $T \\ \ell_i \xrightarrow{g;f} \ell_i$ show that:

 $\mathcal{Q}(\ell_i) \wedge g \Rightarrow \mathcal{Q}(\ell_j) \circ f$

3 Show that $\varphi \Rightarrow Q(s)$ and $Q(t) \Rightarrow \psi$.

Invariants and Machine Instructions

Floyd Verification

Recall the definition of a Hoare triple for *partial correctness*:

 $\{\varphi\} \ P \ \{\psi\}$

This states that if the program P successfully executes from a starting state satisfying φ , the result state will satisfy ψ . Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L, T, s, t):

1 Associate with each location $\ell \in L$ an assertion $\mathcal{Q}(\ell) : \Sigma \to \mathbb{B}$.

2 Prove that this assertion network is *inductive*, that is: For each transition in $T \\ \ell_i \xrightarrow{g;f} \ell_i$ show that:

$$\mathcal{Q}(\ell_i) \wedge g \Rightarrow \mathcal{Q}(\ell_j) \circ f$$

3 Show that $\varphi \Rightarrow \mathcal{Q}(s)$ and $\mathcal{Q}(t) \Rightarrow \psi$.

Johannes will now demonstrate on the previous example

Invariants and Machine Instructions

Adding Concurrency

Owicki-Gries Method

Invariants and Machine Instructions

Adding Concurrency

Invariants and Machine Instructions

Adding Concurrency

Invariants and Machine Instructions

Adding Concurrency

Parallel Composition

Given two processes P and Q with transition diagrams (L_P, T_P, s_P, t_P) and (L_Q, T_Q, s_Q, t_Q) , the *parallel composition* of P and Q, written $P \parallel Q$ is defined as (L, T, s, t) where:

•
$$L = L_P \times L_Q$$

•
$$s = s_P s_Q$$

•
$$t = t_P t_G$$

•
$$p_i q_i \xrightarrow{g;f} p_j q_i \in T$$
 if $p_i \xrightarrow{g;f} p_j \in T_P$
• $p_i q_i \xrightarrow{g;f} p_i q_j \in T$ if $q_i \xrightarrow{g;f} q_j \in T_Q$

Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large diagram. But human brains don't have that much storage space.

Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large diagram. But human brains don't have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of processes increases.

Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large diagram. But human brains don't have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of processes increases.

We can only use Floyd's method directly on the parallel composition (product) diagram in the most basic examples.

Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large diagram. But human brains don't have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of processes increases.

We can only use Floyd's method directly on the parallel composition (product) diagram in the most basic examples.

Susan Owicki's solution

Define inductive assertion networks for P and Q separately. By proving some non-interference properties derive an inductive network for $P \parallel Q$ automatically. This means we won't have to draw that large product diagram!

Owicki-Gries Method ●○○ Invariants and Machine Instructions

Owicki-Gries Method

Steps

To show $\{\varphi\} P \parallel Q \{\psi\}$:

Owicki-Gries Method ●○○ Invariants and Machine Instructions

Owicki-Gries Method

Steps

To show $\{\varphi\} P \parallel Q \{\psi\}$:

Define local assertion networks
 \$\mathcal{P}\$ and \$\mathcal{Q}\$ for both processes.
 Show that they're inductive.

Owicki-Gries Method

Invariants and Machine Instructions

Owicki-Gries Method

Steps

To show $\{\varphi\} P \parallel Q \{\psi\}$:

- Define local assertion networks
 \$\mathcal{P}\$ and \$\mathcal{Q}\$ for both processes.
 Show that they're inductive.
- Por each location p ∈ L_P, show that P(p) is not falsified by any transition of Q. That is, for each q → q' ∈ T_Q:
 P(p) ∧ Q(q) ∧ g ⇒ P(p) ∘ f

Owicki-Gries Method

Invariants and Machine Instructions

Owicki-Gries Method

Steps

To show $\{\varphi\} P \parallel Q \{\psi\}$:

- Define local assertion networks
 \$\mathcal{P}\$ and \$\mathcal{Q}\$ for both processes.
 Show that they're inductive.
- Ø For each location p ∈ L_P, show that P(p) is not falsified by any transition of Q. That is, for each q ⇒ d' ∈ T_Q: P(p) ∧ Q(q) ∧ g ⇒ P(p) ∘ f

③ Vice versa for Q.

Owicki-Gries Method

Invariants and Machine Instructions

Owicki-Gries Method

Steps

To show $\{\varphi\} P \parallel Q \{\psi\}$:

- Define local assertion networks
 \$\mathcal{P}\$ and \$\mathcal{Q}\$ for both processes.
 Show that they're inductive.
- ② For each location p ∈ L_P, show that $\mathcal{P}(p)$ is not falsified by any transition of Q. That is, for each q $\xrightarrow{g;f}$ q' ∈ T_Q: $\mathcal{P}(p) \land \mathcal{Q}(q) \land g \Rightarrow \mathcal{P}(p) \circ f$
- **③** Vice versa for Q.
- Show that $\varphi \Rightarrow \mathcal{P}(s_P) \land \mathcal{Q}(s_Q)$ and $\mathcal{P}(t_P) \land \mathcal{Q}(t_Q) \Rightarrow \psi$.

Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference freedom obligations.

Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the Owicki-Gries method is the conjunction of the local assertions at each of the component states.

Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the Owicki-Gries method is the conjunction of the local assertions at each of the component states.

Assume k transitions and m locations per process. For m processes, Floyd's method spawns $2 + n \cdot k \cdot m^{n-1}$ proof obligations!

Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the Owicki-Gries method is the conjunction of the local assertions at each of the component states.

Assume k transitions and m locations per process. For m processes, Floyd's method spawns $2 + n \cdot k \cdot m^{n-1}$ proof obligations!

Owicki-Gries reduces that to $2 + n \cdot k \cdot (1 + (n - 1) \cdot m)$ — merely quadratic in *n*.

Invariants and Machine Instructions

Proving Mutual Exclusion

The Owicki-Gries method can be used to prove properties like Mutual Exclusion.

Proving Mutual Exclusion

The Owicki-Gries method can be used to prove properties like Mutual Exclusion. **How?** Don't have a postcondition. Instead make the assertions at the critical sections contradictory – so that they cannot be true simultaneously.

Proving Mutual Exclusion

The Owicki-Gries method can be used to prove properties like Mutual Exclusion.

How? Don't have a postcondition. Instead make the assertions at the critical sections contradictory – so that they cannot be true simultaneously.

Caution: Ensure that each transition does not violate the limited critical reference rule!

Proving Mutual Exclusion

The Owicki-Gries method can be used to prove properties like Mutual Exclusion.

How? Don't have a postcondition. Instead make the assertions at the critical sections contradictory – so that they cannot be true simultaneously.

Caution: Ensure that each transition does not violate the limited critical reference rule!

Manna-Pnueli Algorithm						
integer wantp, wantq $\leftarrow 0, 0$						
forever do		forever do				
p_1	non-critical section	q_1	non-critical section			
p_2	if wantq $= -1$	q_2	if wantp $= -1$			
	then wantp $\leftarrow -1$		then wantq $\leftarrow 1$			
	else wantp $\leftarrow 1$		else wantq $\leftarrow -1$			
p ₃	await wantq $ eq$ wantp	q_3	await wantq $ eq -$ wantp			
p ₄	critical section	q_4	critical section			
p_5	wantp $\leftarrow 0$	q_5	wantq \leftarrow 0			

Note: The p_2 and q_2 steps are one atomic step!

Owicki-Gries Method

Invariants and Machine Instructions

Machine Instructions

What about if we had a single machine instruction to swap two values atomically, XC?

Owicki-Gries Method

Invariants and Machine Instructions

Machine Instructions

What about if we had a single machine instruction to swap two values atomically, XC?

bit common $\leftarrow 1$						
bit tp \leftarrow 0		bit tq \leftarrow 0				
forever do		forever do				
p_1	non-critical section	q_1	non-critical section			
	repeat		repeat			
p ₂	XC(tp, common)	q ₂	<pre>XC(tq, common);</pre>			
p 3	until t ${\sf p}=1$	q 3	until t $q=1$			
p 4	critical section	q 4	critical section			
p 5	XC(tp, common)	q 5	XC(tq, common)			

Invariants and Machine Instructions $_{\bigcirc \odot \odot }$

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.

Invariants and Machine Instructions $_{\bigcirc \odot \odot}$

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant. **Benefit:** We don't need to prove interference freedom — the local verification conditions already show that the invariant is preserved.

Invariants and Machine Instructions $\circ \bullet \circ$

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant. **Benefit:** We don't need to prove interference freedom — the local verification conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC example!

Invariants and Machine Instructions $_{\bigcirc \odot \odot}$

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant. **Benefit:** We don't need to prove interference freedom — the local verification conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC example!

Where \oplus is xor. Note: \mathcal{I} is false at p_4q_4 . So if this invariant is preserved we have mutex.

Invariants and Machine Instructions $_{\bigcirc \odot \odot}$

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant. **Benefit:** We don't need to prove interference freedom — the local verification conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC example!

$$egin{array}{rcl} \mathcal{I} &\equiv & (ext{common} \oplus ext{tp} \oplus ext{tq}) = 1 \land (P@p_4 \Rightarrow ext{tp} = 1) \land \ & (Q@q_4 \Rightarrow ext{tq} = 1) \land
egin{array}{rcl} & (ext{common} \oplus ext{tp} \wedge ext{common} = ext{tp}) \land \ & (ext{common} \oplus ext{tp} \wedge ext{common} = ext{tp}) \land \ & (ext{common} \oplus ext{tp} + ext{tq}) \land \ & (ext{common} \oplus ext{tp} + ext{tq}) \land \ & (ext{common} \oplus ext{tp} + ext{tq}) \land \ & (ext{common} \oplus ext{tq}) \land \ & (ext{common} \oplus ext{tp} + ext{tq}) \land \ & (ext{common} \oplus ext{tq}) \land \ & (ext{tq}) \land \ &$$

Where \oplus is xor. Note: \mathcal{I} is false at p_4q_4 . So if this invariant is preserved we have mutex.

Lets prove mutual exclusion for XC!

Owicki-Gries Method

Invariants and Machine Instructions

What now?

- You now have all you need to complete Assignment 0 (warm-up), due Monday the 20th.
- Next week: We will examine some more sophisticated critical section solutions for *n* processes.
- We may also learn about *semaphores*, time permitting!.