
Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Shared Variable Proof Methods, Hardware-Assisted Critical Sections

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of
critical section solutions, and some solutions for two processes.

We also introduced the SPIN model checking tool for rigorous analysis of candidate
solutions.

In this lecture, we will introduce a formal proof method for verifying safety properties,
and apply it to a new kind of critical section solution that relies on hardware support.

2



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of
critical section solutions, and some solutions for two processes.

We also introduced the SPIN model checking tool for rigorous analysis of candidate
solutions.

In this lecture, we will introduce a formal proof method for verifying safety properties,
and apply it to a new kind of critical section solution that relies on hardware support.

3



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Where we are at

In the last lecture we introduced the critical section problem, the four properties of
critical section solutions, and some solutions for two processes.

We also introduced the SPIN model checking tool for rigorous analysis of candidate
solutions.

In this lecture, we will introduce a formal proof method for verifying safety properties,
and apply it to a new kind of critical section solution that relies on hardware support.

4



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

5



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

6



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

7



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

8



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

9



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

10



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0

`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

11



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0
`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

12



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Transition Diagrams

Definition

A transition diagram is a tuple (L,T , s, t)
where:

L is a set of locations
(program counter values).

s ∈ L is a entry location.

t ∈ L is a exit location.

T is a set of transitions.

A transition is written as `i
g ;f−−→ `j where:

`i and `j are locations.

g is a guard Σ→ B
f is a state update Σ→ Σ.

i ← 0;
s ← 0;
while i 6= N do
s ← s + i ;
i ← i + 1

od

`0

`1

>; i ← 0

`2

s ← 0
`3

i 6= N; s ← s + i

i ← i + 1

`4
i = N

13



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}

This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

14



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ.

Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

15



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

16



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

17



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f

3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

18



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example

19



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Floyd Verification
Recall the definition of a Hoare triple for partial correctness:

{ϕ} P {ψ}
This states that if the program P successfully executes from a starting state satisfying
ϕ, the result state will satisfy ψ. Observe that this is a safety property.

Verifying Partial Correctness

Given a transition diagram (L,T , s, t):

1 Associate with each location ` ∈ L an assertion Q(`) : Σ→ B.

2 Prove that this assertion network is inductive, that is: For each transition in T

`i
g ;f−−→ `j show that:

Q(`i ) ∧ g ⇒ Q(`j) ◦ f
3 Show that ϕ⇒ Q(s) and Q(t)⇒ ψ.

Johannes will now demonstrate on the previous example
20



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Adding Concurrency

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0

q1

q2

j6=
N

;m
←

x

x
,j←

m
−

1,j
+

1

j
=

N

p0q0

p0q1

p0q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p1q0

p1q1

p1q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p2q0

p2q1

p2q2
j6=

N
;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

Parallel Composition

Given two processes P and Q with
transition diagrams (LP ,TP , sP , tP) and
(LQ ,TQ , sQ , tQ), the parallel composition
of P and Q, written P ‖ Q is defined as
(L,T , s, t) where:

L = LP × LQ

s = sPsQ

t = tPtQ

piqi
g ;f−−→ pjqi ∈ T if pi

g ;f−−→ pj ∈ TP

piqi
g ;f−−→ piqj ∈ T if qi

g ;f−−→ qj ∈ TQ

21



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Adding Concurrency

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0

q1

q2

j6=
N

;m
←

x

x
,j←

m
−

1,j
+

1

j
=

N

p0q0

p0q1

p0q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p1q0

p1q1

p1q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p2q0

p2q1

p2q2
j6=

N
;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

Parallel Composition

Given two processes P and Q with
transition diagrams (LP ,TP , sP , tP) and
(LQ ,TQ , sQ , tQ), the parallel composition
of P and Q, written P ‖ Q is defined as
(L,T , s, t) where:

L = LP × LQ

s = sPsQ

t = tPtQ

piqi
g ;f−−→ pjqi ∈ T if pi

g ;f−−→ pj ∈ TP

piqi
g ;f−−→ piqj ∈ T if qi

g ;f−−→ qj ∈ TQ

22



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Adding Concurrency

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0

q1

q2

j6=
N

;m
←

x

x
,j←

m
−

1,j
+

1

j
=

N

p0q0

p0q1

p0q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p1q0

p1q1

p1q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p2q0

p2q1

p2q2
j6=

N
;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

Parallel Composition

Given two processes P and Q with
transition diagrams (LP ,TP , sP , tP) and
(LQ ,TQ , sQ , tQ), the parallel composition
of P and Q, written P ‖ Q is defined as
(L,T , s, t) where:

L = LP × LQ

s = sPsQ

t = tPtQ

piqi
g ;f−−→ pjqi ∈ T if pi

g ;f−−→ pj ∈ TP

piqi
g ;f−−→ piqj ∈ T if qi

g ;f−−→ qj ∈ TQ

23



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Adding Concurrency

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0

q1

q2

j6=
N

;m
←

x

x
,j←

m
−

1,j
+

1

j
=

N

p0q0

p0q1

p0q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p1q0

p1q1

p1q2

j6=
N

;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

p2q0

p2q1

p2q2
j6=

N
;m
←

x

x
,j←

m
−

1
,j

+
1

j
=

N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

Parallel Composition

Given two processes P and Q with
transition diagrams (LP ,TP , sP , tP) and
(LQ ,TQ , sQ , tQ), the parallel composition
of P and Q, written P ‖ Q is defined as
(L,T , s, t) where:

L = LP × LQ

s = sPsQ

t = tPtQ

piqi
g ;f−−→ pjqi ∈ T if pi

g ;f−−→ pj ∈ TP

piqi
g ;f−−→ piqj ∈ T if qi

g ;f−−→ qj ∈ TQ

24



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large
diagram. But human brains don’t have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of
processes increases.

We can only use Floyd’s method directly on the parallel composition (product)
diagram in the most basic examples.

Susan Owicki’s solution

Define inductive assertion networks for P and Q separately. By proving some
non-interference properties derive an inductive network for P ‖ Q automatically.
This means we won’t have to draw that large product diagram!

25



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large
diagram. But human brains don’t have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of
processes increases.

We can only use Floyd’s method directly on the parallel composition (product)
diagram in the most basic examples.

Susan Owicki’s solution

Define inductive assertion networks for P and Q separately. By proving some
non-interference properties derive an inductive network for P ‖ Q automatically.
This means we won’t have to draw that large product diagram!

26



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large
diagram. But human brains don’t have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of
processes increases.

We can only use Floyd’s method directly on the parallel composition (product)
diagram in the most basic examples.

Susan Owicki’s solution

Define inductive assertion networks for P and Q separately. By proving some
non-interference properties derive an inductive network for P ‖ Q automatically.
This means we won’t have to draw that large product diagram!

27



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

State Space Explosion

If we were SPIN, we would immediately begin exhaustively analysing this large
diagram. But human brains don’t have that much storage space.

Problem

The number of locations and transitions grows exponentially as the number of
processes increases.

We can only use Floyd’s method directly on the parallel composition (product)
diagram in the most basic examples.

Susan Owicki’s solution

Define inductive assertion networks for P and Q separately. By proving some
non-interference properties derive an inductive network for P ‖ Q automatically.
This means we won’t have to draw that large product diagram!

28



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Owicki-Gries Method

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0q1 q2

j 6= N;m← x

x , j ← m − 1, j + 1

j = N

Steps

To show {ϕ} P ‖ Q {ψ}:

1 Define local assertion networks
P and Q for both processes.
Show that they’re inductive.

2 For each location p ∈ LP , show
that P(p) is not falsified by any
transition of Q. That is, for

each q
g ;f−−→ q′ ∈ TQ :

P(p) ∧Q(q) ∧ g ⇒ P(p) ◦ f
3 Vice versa for Q.

4 Show that ϕ⇒ P(sP) ∧Q(sQ)
and P(tP) ∧Q(tQ)⇒ ψ.

29



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Owicki-Gries Method

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0q1 q2

j 6= N;m← x

x , j ← m − 1, j + 1

j = N

Steps

To show {ϕ} P ‖ Q {ψ}:
1 Define local assertion networks
P and Q for both processes.
Show that they’re inductive.

2 For each location p ∈ LP , show
that P(p) is not falsified by any
transition of Q. That is, for

each q
g ;f−−→ q′ ∈ TQ :

P(p) ∧Q(q) ∧ g ⇒ P(p) ◦ f
3 Vice versa for Q.

4 Show that ϕ⇒ P(sP) ∧Q(sQ)
and P(tP) ∧Q(tQ)⇒ ψ.

30



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Owicki-Gries Method

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0q1 q2

j 6= N;m← x

x , j ← m − 1, j + 1

j = N

Steps

To show {ϕ} P ‖ Q {ψ}:
1 Define local assertion networks
P and Q for both processes.
Show that they’re inductive.

2 For each location p ∈ LP , show
that P(p) is not falsified by any
transition of Q. That is, for

each q
g ;f−−→ q′ ∈ TQ :

P(p) ∧Q(q) ∧ g ⇒ P(p) ◦ f

3 Vice versa for Q.

4 Show that ϕ⇒ P(sP) ∧Q(sQ)
and P(tP) ∧Q(tQ)⇒ ψ.

31



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Owicki-Gries Method

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0q1 q2

j 6= N;m← x

x , j ← m − 1, j + 1

j = N

Steps

To show {ϕ} P ‖ Q {ψ}:
1 Define local assertion networks
P and Q for both processes.
Show that they’re inductive.

2 For each location p ∈ LP , show
that P(p) is not falsified by any
transition of Q. That is, for

each q
g ;f−−→ q′ ∈ TQ :

P(p) ∧Q(q) ∧ g ⇒ P(p) ◦ f
3 Vice versa for Q.

4 Show that ϕ⇒ P(sP) ∧Q(sQ)
and P(tP) ∧Q(tQ)⇒ ψ.

32



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Owicki-Gries Method

p0p1 p2

i 6= N; n← x

x , i ← n + 1, i + 1

i = N

q0q1 q2

j 6= N;m← x

x , j ← m − 1, j + 1

j = N

Steps

To show {ϕ} P ‖ Q {ψ}:
1 Define local assertion networks
P and Q for both processes.
Show that they’re inductive.

2 For each location p ∈ LP , show
that P(p) is not falsified by any
transition of Q. That is, for

each q
g ;f−−→ q′ ∈ TQ :

P(p) ∧Q(q) ∧ g ⇒ P(p) ◦ f
3 Vice versa for Q.

4 Show that ϕ⇒ P(sP) ∧Q(sQ)
and P(tP) ∧Q(tQ)⇒ ψ.

33



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference
freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the
Owicki-Gries method is the conjunction of the local assertions at each of the
component states.

Assume k transitions and m locations per process. For m processes, Floyd’s method
spawns 2 + n · k ·mn−1 proof obligations!

Owicki-Gries reduces that to 2 + n · k · (1 + (n − 1) ·m) — merely quadratic in n.

34



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference
freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the
Owicki-Gries method is the conjunction of the local assertions at each of the
component states.

Assume k transitions and m locations per process. For m processes, Floyd’s method
spawns 2 + n · k ·mn−1 proof obligations!

Owicki-Gries reduces that to 2 + n · k · (1 + (n − 1) ·m) — merely quadratic in n.

35



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference
freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the
Owicki-Gries method is the conjunction of the local assertions at each of the
component states.

Assume k transitions and m locations per process. For m processes, Floyd’s method
spawns 2 + n · k ·mn−1 proof obligations!

Owicki-Gries reduces that to 2 + n · k · (1 + (n − 1) ·m) — merely quadratic in n.

36



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

How does it help?

The Owicki-Gries method generalises to n processes, by requiring more interference
freedom obligations.

Derived Assertion Network

The automatic assertion network we get for the parallel composition from the
Owicki-Gries method is the conjunction of the local assertions at each of the
component states.

Assume k transitions and m locations per process. For m processes, Floyd’s method
spawns 2 + n · k ·mn−1 proof obligations!

Owicki-Gries reduces that to 2 + n · k · (1 + (n − 1) ·m) — merely quadratic in n.

37



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Proving Mutual Exclusion
The Owicki-Gries method can be used to prove properties like Mutual Exclusion.

How? Don’t have a postcondition. Instead make the assertions at the critical sections
contradictory – so that they cannot be true simultaneously.
Caution: Ensure that each transition does not violate the limited critical reference rule!

Manna-Pnueli Algorithm
integer wantp, wantq← 0, 0

forever do forever do
p1 non-critical section q1 non-critical section
p2 if wantq = −1 q2 if wantp = −1

then wantp← −1 then wantq← 1
else wantp← 1 else wantq← −1

p3 await wantq 6= wantp q3 await wantq 6= −wantp
p4 critical section q4 critical section
p5 wantp← 0 q5 wantq← 0

Note: The p2 and q2 steps are one atomic step!

38



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Proving Mutual Exclusion
The Owicki-Gries method can be used to prove properties like Mutual Exclusion.
How? Don’t have a postcondition. Instead make the assertions at the critical sections
contradictory – so that they cannot be true simultaneously.

Caution: Ensure that each transition does not violate the limited critical reference rule!
Manna-Pnueli Algorithm

integer wantp, wantq← 0, 0

forever do forever do
p1 non-critical section q1 non-critical section
p2 if wantq = −1 q2 if wantp = −1

then wantp← −1 then wantq← 1
else wantp← 1 else wantq← −1

p3 await wantq 6= wantp q3 await wantq 6= −wantp
p4 critical section q4 critical section
p5 wantp← 0 q5 wantq← 0

Note: The p2 and q2 steps are one atomic step!

39



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Proving Mutual Exclusion
The Owicki-Gries method can be used to prove properties like Mutual Exclusion.
How? Don’t have a postcondition. Instead make the assertions at the critical sections
contradictory – so that they cannot be true simultaneously.
Caution: Ensure that each transition does not violate the limited critical reference rule!

Manna-Pnueli Algorithm
integer wantp, wantq← 0, 0

forever do forever do
p1 non-critical section q1 non-critical section
p2 if wantq = −1 q2 if wantp = −1

then wantp← −1 then wantq← 1
else wantp← 1 else wantq← −1

p3 await wantq 6= wantp q3 await wantq 6= −wantp
p4 critical section q4 critical section
p5 wantp← 0 q5 wantq← 0

Note: The p2 and q2 steps are one atomic step!

40



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Proving Mutual Exclusion
The Owicki-Gries method can be used to prove properties like Mutual Exclusion.
How? Don’t have a postcondition. Instead make the assertions at the critical sections
contradictory – so that they cannot be true simultaneously.
Caution: Ensure that each transition does not violate the limited critical reference rule!

Manna-Pnueli Algorithm
integer wantp, wantq← 0, 0

forever do forever do
p1 non-critical section q1 non-critical section
p2 if wantq = −1 q2 if wantp = −1

then wantp← −1 then wantq← 1
else wantp← 1 else wantq← −1

p3 await wantq 6= wantp q3 await wantq 6= −wantp
p4 critical section q4 critical section
p5 wantp← 0 q5 wantq← 0

Note: The p2 and q2 steps are one atomic step!
41



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Machine Instructions

What about if we had a single machine instruction to swap two values atomically, XC?

bit common← 1

bit tp← 0 bit tq← 0
forever do forever do
p1 non-critical section q1 non-critical section

repeat repeat
p2 XC(tp, common) q2 XC(tq, common);
p3 until tp = 1 q3 until tq = 1
p4 critical section q4 critical section
p5 XC(tp, common) q5 XC(tq, common)

42



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

Machine Instructions

What about if we had a single machine instruction to swap two values atomically, XC?

bit common← 1

bit tp← 0 bit tq← 0
forever do forever do
p1 non-critical section q1 non-critical section

repeat repeat
p2 XC(tp, common) q2 XC(tq, common);
p3 until tp = 1 q3 until tq = 1
p4 critical section q4 critical section
p5 XC(tp, common) q5 XC(tq, common)

43



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.

Benefit: We don’t need to prove interference freedom — the local verification
conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC

example!

I ≡ (common⊕ tp⊕ tq) = 1 ∧ (P@p4 ⇒ tp = 1) ∧
(Q@q4 ⇒ tq = 1) ∧ ¬(common = tp ∧ common = tq)

Where ⊕ is xor. Note: I is false at p4q4. So if this invariant is preserved we have
mutex.

Lets prove mutual exclusion for XC!

44



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.
Benefit: We don’t need to prove interference freedom — the local verification
conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC

example!

I ≡ (common⊕ tp⊕ tq) = 1 ∧ (P@p4 ⇒ tp = 1) ∧
(Q@q4 ⇒ tq = 1) ∧ ¬(common = tp ∧ common = tq)

Where ⊕ is xor. Note: I is false at p4q4. So if this invariant is preserved we have
mutex.

Lets prove mutual exclusion for XC!

45



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.
Benefit: We don’t need to prove interference freedom — the local verification
conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC

example!

I ≡ (common⊕ tp⊕ tq) = 1 ∧ (P@p4 ⇒ tp = 1) ∧
(Q@q4 ⇒ tq = 1) ∧ ¬(common = tp ∧ common = tq)

Where ⊕ is xor. Note: I is false at p4q4. So if this invariant is preserved we have
mutex.

Lets prove mutual exclusion for XC!

46



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.
Benefit: We don’t need to prove interference freedom — the local verification
conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC

example!

I ≡ (common⊕ tp⊕ tq) = 1 ∧ (P@p4 ⇒ tp = 1) ∧
(Q@q4 ⇒ tq = 1) ∧ ¬(common = tp ∧ common = tq)

Where ⊕ is xor. Note: I is false at p4q4. So if this invariant is preserved we have
mutex.

Lets prove mutual exclusion for XC!

47



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

One Big Invariant

Imagine assertion network(s) where every assertion is the same: An invariant.
Benefit: We don’t need to prove interference freedom — the local verification
conditions already show that the invariant is preserved.

Example (Exchange-based Critical Section Solution)

Using assertions about the program counters, we can craft an invariant for the XC

example!

I ≡ (common⊕ tp⊕ tq) = 1 ∧ (P@p4 ⇒ tp = 1) ∧
(Q@q4 ⇒ tq = 1) ∧ ¬(common = tp ∧ common = tq)

Where ⊕ is xor. Note: I is false at p4q4. So if this invariant is preserved we have
mutex.

Lets prove mutual exclusion for XC!

48



Transition Diagrams Owicki-Gries Method Invariants and Machine Instructions

What now?

You now have all you need to complete Assignment 0 (warm-up), due Monday the
20th.

Next week: We will examine some more sophisticated critical section solutions for
n processes.

We may also learn about semaphores, time permitting!.

49


	Transition Diagrams
	Owicki-Gries Method
	Invariants and Machine Instructions

