
Machine Instructions

Hardware-Assisted Critical Sections

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1



Machine Instructions

Where we are at

In the last lecture we introduced efficient algorithms for critical
section solutions for N processes.
In this lecture, we will talk more about hardware-assisted critical
sections and how they are used to implement a basic unit of
synchronisation, called a lock or mutex.

2



Machine Instructions

Machine Instructions

Recall the exchange solution:

bit common← 1

bit tp← 0 bit tq← 0
forever do forever do
p1 non-critical section q1 non-critical section

repeat repeat
p2 XC(tp, common) q2 XC(tq, common);
p3 until tp = 1 q3 until tq = 1
p4 critical section q4 critical section
p5 XC(tp, common) q5 XC(tq, common)

3



Machine Instructions

Machine Instructions

Now let’s see the test and set solution:

TS(x , y) ≡ x , y := y , 1 (atomically)

bit common← 0

bit tp bit tq
forever do forever do
p1 non-critical section q1 non-critical section

repeat repeat
p2 TS(tp, common) q2 TS(tq, common);
p3 until tp = 0 q3 until tq = 0
p4 critical section q4 critical section
p5 common← 0 q5 common← 0

4



Machine Instructions

Locks

The variable common is called a lock (or mutex). A lock is the
most common means of concurrency control in a programming
language implementation. Typically it is abstracted into an
abstract data type, with two operations:

Taking the lock — the first exchange (step p2/q2)

Releasing the lock — the second exchange (step p5/q5)

var lock
forever do forever do
p1 non-critical section q1 non-critical section
p2 take (lock) q2 take (lock);
p3 critical section q3 critical section
p4 release (lock) q4 release (lock);

5



Machine Instructions

Architectural Problems

In a multiprocessor execution environment, reads and writes to
variables initially only read from/write to cache.

Writes to shared variables must eventually trigger a write-back to
main memory over the bus.
These writes cause the shared variable to be cache invalidated.
Each processor must now consult main memory when reading in
order to get an up-to-date value.
The problem: Bus traffic is limited by hardware.

With these instructions...

The processes spin while waiting, writing to shared variables on
each spin. This quickly causes the bus to become jammed, and
can delay processes from releasing the lock (c.f. the thundering
herd problem).

6



Machine Instructions

Architectural Problems

In a multiprocessor execution environment, reads and writes to
variables initially only read from/write to cache.
Writes to shared variables must eventually trigger a write-back to
main memory over the bus.

These writes cause the shared variable to be cache invalidated.
Each processor must now consult main memory when reading in
order to get an up-to-date value.
The problem: Bus traffic is limited by hardware.

With these instructions...

The processes spin while waiting, writing to shared variables on
each spin. This quickly causes the bus to become jammed, and
can delay processes from releasing the lock (c.f. the thundering
herd problem).

7



Machine Instructions

Architectural Problems

In a multiprocessor execution environment, reads and writes to
variables initially only read from/write to cache.
Writes to shared variables must eventually trigger a write-back to
main memory over the bus.
These writes cause the shared variable to be cache invalidated.
Each processor must now consult main memory when reading in
order to get an up-to-date value.

The problem: Bus traffic is limited by hardware.

With these instructions...

The processes spin while waiting, writing to shared variables on
each spin. This quickly causes the bus to become jammed, and
can delay processes from releasing the lock (c.f. the thundering
herd problem).

8



Machine Instructions

Architectural Problems

In a multiprocessor execution environment, reads and writes to
variables initially only read from/write to cache.
Writes to shared variables must eventually trigger a write-back to
main memory over the bus.
These writes cause the shared variable to be cache invalidated.
Each processor must now consult main memory when reading in
order to get an up-to-date value.
The problem: Bus traffic is limited by hardware.

With these instructions...

The processes spin while waiting, writing to shared variables on
each spin. This quickly causes the bus to become jammed, and
can delay processes from releasing the lock (c.f. the thundering
herd problem).

9



Machine Instructions

Architectural Problems

In a multiprocessor execution environment, reads and writes to
variables initially only read from/write to cache.
Writes to shared variables must eventually trigger a write-back to
main memory over the bus.
These writes cause the shared variable to be cache invalidated.
Each processor must now consult main memory when reading in
order to get an up-to-date value.
The problem: Bus traffic is limited by hardware.

With these instructions...

The processes spin while waiting, writing to shared variables on
each spin. This quickly causes the bus to become jammed, and
can delay processes from releasing the lock (c.f. the thundering
herd problem).

10



Machine Instructions

The solution?

Johannes will demonstrate in Promela the test-and-test-and-set
solution (and a similar approach for exchange).

11



Machine Instructions

Dining Philosophers

Five philosophers sit around a
dining table with a huge bowl
of spaghetti in the centre,
five plates, and five forks, all
laid out evenly. For whatever
reason, philosophers can eat
spaghetti only with two forksa.
The philosophers would like to
alternate between eating and
thinking.

aThis would be more convincing
with chopsticks. Blame Tony Hoare.

12



Machine Instructions

Looks like Critical Sections

forever do
think
pre-protocol
eat
post-protocol

For philosopher i ∈ 0 . . . 4:
f0, f1, f2, f3 , f4
forever do
think
take(fi )
take(f(i+1) mod 5)
eat
release(fi )
release(f(i+1) mod 5)

Deadlock is possible (consider lockstep).

13



Machine Instructions

Looks like Critical Sections

forever do
think
pre-protocol
eat
post-protocol

For philosopher i ∈ 0 . . . 4:
f0, f1, f2, f3 , f4
forever do
think
take(fi )
take(f(i+1) mod 5)
eat
release(fi )
release(f(i+1) mod 5)

Deadlock is possible (consider lockstep).

14



Machine Instructions

Looks like Critical Sections

forever do
think
pre-protocol
eat
post-protocol

For philosopher i ∈ 0 . . . 4:
f0, f1, f2, f3 , f4
forever do
think
take(fi )
take(f(i+1) mod 5)
eat
release(fi )
release(f(i+1) mod 5)

Deadlock is possible (consider lockstep).

15



Machine Instructions

Fixing the Issue

f0, f1, f2, f3 , f4
Philosophers 0. . . 3 Philosopher 4

forever do forever do
think think
take(fi ) take(f0)
take(f(i+1) mod 5) take(f4)
eat eat
release(fi ) release(f0)
release(f(i+1) mod 5) release(f4)

We have to enforce a global ordering of locks.

16



Machine Instructions

Fixing the Issue

f0, f1, f2, f3 , f4
Philosophers 0. . . 3 Philosopher 4

forever do forever do
think think
take(fi ) take(f0)
take(f(i+1) mod 5) take(f4)
eat eat
release(fi ) release(f0)
release(f(i+1) mod 5) release(f4)

We have to enforce a global ordering of locks.

17



Machine Instructions

What now?

Assignment 0 deadline is on Monday.

Assignment 1 comes out next week! Please find a partner!

Next week: We will look at semaphores and monitors.

18


	Machine Instructions
	


