
Monitors Readers and Writers Persistent Data Structures

Monitors

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1

Monitors Readers and Writers Persistent Data Structures

Where we are at

Last lecture, we saw a generalisation of locks called semaphores.

In this lecture, we’ll look at another concurrency abstraction,
designed to ameliorate some problems with semaphores: monitors.

2

Monitors Readers and Writers Persistent Data Structures

Main Disadvantages of Semaphores

1 Lack of structure: when building a large system,
responsibility is diffused among implementers.
Someone forgets to call signal =⇒ possible deadlock.

2 Global visibility: when something goes wrong, the whole
program must be inspected =⇒ deadlocks are hard to isolate.

Solution

Monitors concentrate one responsibility into a single module and
encapsulate critical resources.

They offer more structure than semaphores; more control than
await.

3

Monitors Readers and Writers Persistent Data Structures

Main Disadvantages of Semaphores

1 Lack of structure: when building a large system,
responsibility is diffused among implementers.
Someone forgets to call signal =⇒ possible deadlock.

2 Global visibility: when something goes wrong, the whole
program must be inspected =⇒ deadlocks are hard to isolate.

Solution

Monitors concentrate one responsibility into a single module and
encapsulate critical resources.

They offer more structure than semaphores; more control than
await.

4

Monitors Readers and Writers Persistent Data Structures

Main Disadvantages of Semaphores

1 Lack of structure: when building a large system,
responsibility is diffused among implementers.
Someone forgets to call signal =⇒ possible deadlock.

2 Global visibility: when something goes wrong, the whole
program must be inspected =⇒ deadlocks are hard to isolate.

Solution

Monitors concentrate one responsibility into a single module and
encapsulate critical resources.

They offer more structure than semaphores; more control than
await.

5

Monitors Readers and Writers Persistent Data Structures

Monitors

History:

In the literature: Brinch Hansen (1973) and Hoare (1974)

languages — Concurrent Pascal (1975). . . Java, Pthreads
library

Definition

Monitors are a generalisation of objects (as in OOP).

May encapsulate some private data —all fields are private

Exposes one or more operations — akin to methods.

Implicit mutual exclusion—each operation invocation is
implicitly atomic.

Explicit signaling and waiting through condition variables.

6

Monitors Readers and Writers Persistent Data Structures

Our Counting Example

Algorithm 2.1: Atomicity of monitor operations
monitor CS

integer n ← 0

operation increment
integer temp
temp ← n
n ← temp + 1

p q
p1: loop ten times q1: loop ten times
p2: CS.increment q2: CS.increment

7

Monitors Readers and Writers Persistent Data Structures

Program structure

monitor1 . . . monitorM
process1 . . . processN

processes interact indirectly by using the same monitor

processes call monitor procedures

at most one call active in a monitor at a time — by definition

explicit signaling using condition variables

monitor invariant: predicate about local state that is true
when no call is active

8

Monitors Readers and Writers Persistent Data Structures

Condition variables

Definition

Condition variables are named FIFO queues of blocked processes.

Processes executing a procedure of a monitor with condition
variable cv can:

voluntarily suspend themselves using waitC(cv),

unblock the first suspended process by calling signalC(cv), or

test for emptiness of the queue: empty(cv).

Warning

The exact semantics of these differ between implementations!

9

Monitors Readers and Writers Persistent Data Structures

Condition variables

Definition

Condition variables are named FIFO queues of blocked processes.

Processes executing a procedure of a monitor with condition
variable cv can:

voluntarily suspend themselves using waitC(cv),

unblock the first suspended process by calling signalC(cv), or

test for emptiness of the queue: empty(cv).

Warning

The exact semantics of these differ between implementations!

10

Monitors Readers and Writers Persistent Data Structures

Condition variables

Definition

Condition variables are named FIFO queues of blocked processes.

Processes executing a procedure of a monitor with condition
variable cv can:

voluntarily suspend themselves using waitC(cv),

unblock the first suspended process by calling signalC(cv), or

test for emptiness of the queue: empty(cv).

Warning

The exact semantics of these differ between implementations!

11

Monitors Readers and Writers Persistent Data Structures

Algorithm 2.2: Semaphore simulated with a monitor
monitor Sem

integer s ← k
condition notZero
operation wait

if s = 0
waitC(notZero)

s ← s − 1
operation signal

s ← s + 1
signalC(notZero)

p q
loop forever loop forever

non-critical section non-critical section
p1: Sem.wait q1: Sem.wait

critical section critical section
p2: Sem.signal q2: Sem.signal

12

Monitors Readers and Writers Persistent Data Structures

State Diagram for the Semaphore Simulation

p1: Sem.wait,
q1: Sem.wait,

1, 〈〉

#
"

!

p1: Sem.wait,
q2: Sem.signal,

0, 〈〉

#
"

!

p2: Sem.signal,
q1: Sem.wait,

0, 〈〉

#
"

!

blocked,
q2: Sem.signal

0, 〈p〉

#
"

!

p2: Sem.signal,
blocked,

0, 〈q〉

#
"

!

-

�
-

6

?

-

6

������������������9

13

Monitors Readers and Writers Persistent Data Structures

Algorithm 2.3: Producer-consumer (finite buffer, monitor)
monitor PC

bufferType buffer ← empty
condition notEmpty
condition notFull
operation append(datatype V)

if buffer is full
waitC(notFull)

append(V, buffer)
signalC(notEmpty)

operation take()
datatype W
if buffer is empty

waitC(notEmpty)
W ← head(buffer)
signalC(notFull)
return W

14

Monitors Readers and Writers Persistent Data Structures

Algorithm 2.3: Producer-consumer . . . (continued)
producer consumer

datatype D datatype D
loop forever loop forever

p1: D ← produce q1: D ← PC.take
p2: PC.append(D) q2: consume(D)

15

Monitors Readers and Writers Persistent Data Structures

The Immediate Resumption Requirement
Question: When a condition variable is signalled, who executes
next? It depends!

A
AA

A
AA

�
��

�
��

H
HH

monitor

condition 1

condition 2

waiting

signaling

fff

f
fff

ff

ff

f

16

Monitors Readers and Writers Persistent Data Structures

Signaling disciplines
Precedences:

S the signaling process
W waiting on a condition variable
E waiting on entry

Signal and Urgent Wait

In Hoare’s paper, E < S < W . This is also called the immediate
resumption requirement (IRR). That is, a signalling process must
wait for the signalled process to exit the monitor (or wait on a
condition variable) before resuming. Signalling gives up control!

Signal and Continue

In Java, pthreads, and many other implementations, E = W < S .
This means that signalling processes continue executing, and
signalled processes await entry to the monitor at the same priority
as everyone else.

17

Monitors Readers and Writers Persistent Data Structures

Diagram for monitors

entry
queue

executing
in monitor

condition
variable
queue

monitor free

SW

wait

SW

SC

call return

18

Monitors Readers and Writers Persistent Data Structures

Simulating Monitors in Promela 1

1 bool lock = false;

2

3 typedef Condition {

4 bool gate;

5 byte waiting;

6 }

7 inline enterMon() {

8 atomic {

9 !lock;

10 lock = true;

11 }

12 }

13 inline leaveMon() {

14 lock = false;

15 }

19

Monitors Readers and Writers Persistent Data Structures

Simulating Monitors in Promela 2

1 inline waitC(C) {

2 atomic {

3 C.waiting++;

4 lock = false; /* Exit monitor */

5 C.gate; /* Wait for gate */

6 lock = true; /* IRR */

7 C.gate = false; /* Reset gate */

8 C.waiting--;

9 }

10 }

20

Monitors Readers and Writers Persistent Data Structures

Simulating Monitors in Promela 3

1 inline signalC(C) {

2 atomic {

3 if

4 /* Signal only if waiting */

5 :: (C.waiting > 0) ->

6 C.gate = true;

7 !lock; /* IRR - wait for released lock */

8 lock = true; /* Take lock again */

9 :: else

10 fi;

11 }

12 }

13

14 #define emptyC(C) (C.waiting == 0)

21

Monitors Readers and Writers Persistent Data Structures

Monitors in Java
An object in Java can be made to approximate a monitor with one
waitset (i.e. unfair) condition variable and no immmediate
resumption:

A method is made mutually exclusive using the
synchronized keyword.

Synchronized methods of an object may call their wait() to
suspend until notify() is called, analogous to condition
variables.

No immediate resumption requirement means that waiting
processes need to re-check their conditions!

No strong fairness guarantee about wait lists, meaning any
arbitrary waiting process is awoken by notify().

Resources for Java Programming

See also Vladimir’s videos introducing concurrent programming in
Java, available on the course website.

22

Monitors Readers and Writers Persistent Data Structures

Monitors in Java
An object in Java can be made to approximate a monitor with one
waitset (i.e. unfair) condition variable and no immmediate
resumption:

A method is made mutually exclusive using the
synchronized keyword.

Synchronized methods of an object may call their wait() to
suspend until notify() is called, analogous to condition
variables.

No immediate resumption requirement means that waiting
processes need to re-check their conditions!

No strong fairness guarantee about wait lists, meaning any
arbitrary waiting process is awoken by notify().

Resources for Java Programming

See also Vladimir’s videos introducing concurrent programming in
Java, available on the course website.

23

Monitors Readers and Writers Persistent Data Structures

Monitors in Java
An object in Java can be made to approximate a monitor with one
waitset (i.e. unfair) condition variable and no immmediate
resumption:

A method is made mutually exclusive using the
synchronized keyword.

Synchronized methods of an object may call their wait() to
suspend until notify() is called, analogous to condition
variables.

No immediate resumption requirement means that waiting
processes need to re-check their conditions!

No strong fairness guarantee about wait lists, meaning any
arbitrary waiting process is awoken by notify().

Resources for Java Programming

See also Vladimir’s videos introducing concurrent programming in
Java, available on the course website.

24

Monitors Readers and Writers Persistent Data Structures

Monitors in Java
An object in Java can be made to approximate a monitor with one
waitset (i.e. unfair) condition variable and no immmediate
resumption:

A method is made mutually exclusive using the
synchronized keyword.

Synchronized methods of an object may call their wait() to
suspend until notify() is called, analogous to condition
variables.

No immediate resumption requirement means that waiting
processes need to re-check their conditions!

No strong fairness guarantee about wait lists, meaning any
arbitrary waiting process is awoken by notify().

Resources for Java Programming

See also Vladimir’s videos introducing concurrent programming in
Java, available on the course website.

25

Monitors Readers and Writers Persistent Data Structures

Monitors in Java
An object in Java can be made to approximate a monitor with one
waitset (i.e. unfair) condition variable and no immmediate
resumption:

A method is made mutually exclusive using the
synchronized keyword.

Synchronized methods of an object may call their wait() to
suspend until notify() is called, analogous to condition
variables.

No immediate resumption requirement means that waiting
processes need to re-check their conditions!

No strong fairness guarantee about wait lists, meaning any
arbitrary waiting process is awoken by notify().

Resources for Java Programming

See also Vladimir’s videos introducing concurrent programming in
Java, available on the course website.

26

Monitors Readers and Writers Persistent Data Structures

Shared Data

Consider the Readers and Writers problem, common in any
database:

Problem

We have a large data structure which cannot be updated in one
atomic step. It is shared between many writers and many readers.

Desiderata:

Atomicity. An update should happen in one go, and
updates-in-progress or partial updates are not observable.

Consistency. Any reader that starts after an update finishes
will see that update.

Minimal waiting.

27

Monitors Readers and Writers Persistent Data Structures

Shared Data

Consider the Readers and Writers problem, common in any
database:

Problem

We have a large data structure which cannot be updated in one
atomic step. It is shared between many writers and many readers.

Desiderata:

Atomicity. An update should happen in one go, and
updates-in-progress or partial updates are not observable.

Consistency. Any reader that starts after an update finishes
will see that update.

Minimal waiting.

28

Monitors Readers and Writers Persistent Data Structures

Shared Data

Consider the Readers and Writers problem, common in any
database:

Problem

We have a large data structure which cannot be updated in one
atomic step. It is shared between many writers and many readers.

Desiderata:

Atomicity. An update should happen in one go, and
updates-in-progress or partial updates are not observable.

Consistency. Any reader that starts after an update finishes
will see that update.

Minimal waiting.

29

Monitors Readers and Writers Persistent Data Structures

Shared Data

Consider the Readers and Writers problem, common in any
database:

Problem

We have a large data structure which cannot be updated in one
atomic step. It is shared between many writers and many readers.

Desiderata:

Atomicity. An update should happen in one go, and
updates-in-progress or partial updates are not observable.

Consistency. Any reader that starts after an update finishes
will see that update.

Minimal waiting.

30

Monitors Readers and Writers Persistent Data Structures

A Crappy Solution

Treat both reads and updates as critical sections — use any old
critical section solution to sequentialise all reads and writes to the
data structure.

Observation

Updates are atomic and reads are consistent — but reads can’t
happen concurrently, which leads to unnecessary contention.

31

Monitors Readers and Writers Persistent Data Structures

A Crappy Solution

Treat both reads and updates as critical sections — use any old
critical section solution to sequentialise all reads and writes to the
data structure.

Observation

Updates are atomic and reads are consistent — but reads can’t
happen concurrently, which leads to unnecessary contention.

32

Monitors Readers and Writers Persistent Data Structures

A Better Solution

A monitor with two condition variables (à la Ben-Ari chapter 7).

Requirements

1 Atomicity and consistency (still)

2 Multiple reads can execute concurrently.

3 If someone writes: no concurrent reads or writes.

33

Monitors Readers and Writers Persistent Data Structures

Algorithm 2.4: Readers and writers with a monitor
monitor RW

integer readers ← 0
integer writers ← 0
condition OKtoRead, OKtoWrite
operation StartRead

if writers 6= 0 or not empty(OKtoWrite)
waitC(OKtoRead)

readers ← readers + 1
signalC(OKtoRead)

operation EndRead
readers ← readers − 1
if readers = 0

signalC(OKtoWrite)

34

Monitors Readers and Writers Persistent Data Structures

Algorithm 2.4: Readers and writers with a monitor (continued)
operation StartWrite

if writers 6= 0 or readers 6= 0
waitC(OKtoWrite)

writers ← writers + 1

operation EndWrite
writers ← writers − 1
if empty(OKtoRead)

then signalC(OKtoWrite)
else signalC(OKtoRead)

reader writer
p1: RW.StartRead q1: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite

35

Monitors Readers and Writers Persistent Data Structures

Proving Atomicity
Essentially we desire mutual exclusion of writers with any other
process (writer or reader).

Like any safety property, we can prove it by gathering invariants.
Let R be the number of active readers and W be the number of
active writers.

readers = R ≥ 0 and writers = W ≥ 0, trivially.
(R > 0⇒W = 0) ∧ (W ≤ 1) ∧ (W = 1⇒ R = 0).
This is preserved across the eight possible transitions in this
system: the four monitor operations running unhindered, and
the four partial operations resulting from a signal. See
Ben-Ari p159 for details.

Liveness Properties

We may also wish to prove some analogue of starvation freedom as
Ben-Ari does on p160. This gets a bit handwavy. Without a
concrete monitor implementation, it’s hard to know whether
starvation is possible!

36

Monitors Readers and Writers Persistent Data Structures

Proving Atomicity
Essentially we desire mutual exclusion of writers with any other
process (writer or reader).
Like any safety property, we can prove it by gathering invariants.
Let R be the number of active readers and W be the number of
active writers.

readers = R ≥ 0 and writers = W ≥ 0, trivially.
(R > 0⇒W = 0) ∧ (W ≤ 1) ∧ (W = 1⇒ R = 0).
This is preserved across the eight possible transitions in this
system: the four monitor operations running unhindered, and
the four partial operations resulting from a signal. See
Ben-Ari p159 for details.

Liveness Properties

We may also wish to prove some analogue of starvation freedom as
Ben-Ari does on p160. This gets a bit handwavy. Without a
concrete monitor implementation, it’s hard to know whether
starvation is possible!

37

Monitors Readers and Writers Persistent Data Structures

Proving Atomicity
Essentially we desire mutual exclusion of writers with any other
process (writer or reader).
Like any safety property, we can prove it by gathering invariants.
Let R be the number of active readers and W be the number of
active writers.

readers = R ≥ 0 and writers = W ≥ 0, trivially.

(R > 0⇒W = 0) ∧ (W ≤ 1) ∧ (W = 1⇒ R = 0).
This is preserved across the eight possible transitions in this
system: the four monitor operations running unhindered, and
the four partial operations resulting from a signal. See
Ben-Ari p159 for details.

Liveness Properties

We may also wish to prove some analogue of starvation freedom as
Ben-Ari does on p160. This gets a bit handwavy. Without a
concrete monitor implementation, it’s hard to know whether
starvation is possible!

38

Monitors Readers and Writers Persistent Data Structures

Proving Atomicity
Essentially we desire mutual exclusion of writers with any other
process (writer or reader).
Like any safety property, we can prove it by gathering invariants.
Let R be the number of active readers and W be the number of
active writers.

readers = R ≥ 0 and writers = W ≥ 0, trivially.
(R > 0⇒W = 0) ∧ (W ≤ 1) ∧ (W = 1⇒ R = 0).
This is preserved across the eight possible transitions in this
system: the four monitor operations running unhindered, and
the four partial operations resulting from a signal. See
Ben-Ari p159 for details.

Liveness Properties

We may also wish to prove some analogue of starvation freedom as
Ben-Ari does on p160. This gets a bit handwavy. Without a
concrete monitor implementation, it’s hard to know whether
starvation is possible!

39

Monitors Readers and Writers Persistent Data Structures

Proving Atomicity
Essentially we desire mutual exclusion of writers with any other
process (writer or reader).
Like any safety property, we can prove it by gathering invariants.
Let R be the number of active readers and W be the number of
active writers.

readers = R ≥ 0 and writers = W ≥ 0, trivially.
(R > 0⇒W = 0) ∧ (W ≤ 1) ∧ (W = 1⇒ R = 0).
This is preserved across the eight possible transitions in this
system: the four monitor operations running unhindered, and
the four partial operations resulting from a signal. See
Ben-Ari p159 for details.

Liveness Properties

We may also wish to prove some analogue of starvation freedom as
Ben-Ari does on p160. This gets a bit handwavy. Without a
concrete monitor implementation, it’s hard to know whether
starvation is possible!

40

Monitors Readers and Writers Persistent Data Structures

Reading and Writing

Complication

Now suppose we don’t want readers to wait (much) while an update
is performed. Instead, we’d rather they get an older version of the
data structure.

Trick: A writer creates their own local copy of the data structure,
and then updates the (shared) pointer to the data structure to
point to their copy.
Johannes: Draw on the board

Atomicity The only shared write is now just to one pointer.

Consistency Reads that start before the pointer update get the
older version, but reads that start after get the latest.

41

Monitors Readers and Writers Persistent Data Structures

Reading and Writing

Complication

Now suppose we don’t want readers to wait (much) while an update
is performed. Instead, we’d rather they get an older version of the
data structure.

Trick: A writer creates their own local copy of the data structure,
and then updates the (shared) pointer to the data structure to
point to their copy.
Johannes: Draw on the board

Atomicity The only shared write is now just to one pointer.

Consistency Reads that start before the pointer update get the
older version, but reads that start after get the latest.

42

Monitors Readers and Writers Persistent Data Structures

Reading and Writing

Complication

Now suppose we don’t want readers to wait (much) while an update
is performed. Instead, we’d rather they get an older version of the
data structure.

Trick: A writer creates their own local copy of the data structure,
and then updates the (shared) pointer to the data structure to
point to their copy.
Johannes: Draw on the board

Atomicity The only shared write is now just to one pointer.

Consistency Reads that start before the pointer update get the
older version, but reads that start after get the latest.

43

Monitors Readers and Writers Persistent Data Structures

Persistent Data Structures
Copying is O(n) in the worst case, but we can do better for many
tree-like types of data structure.

Example (Binary Search Tree)

64

37

20

3 22

40

102

Pointer

64

37

40

42

44

Monitors Readers and Writers Persistent Data Structures

Persistent Data Structures
Copying is O(n) in the worst case, but we can do better for many
tree-like types of data structure.

Example (Binary Search Tree)

64

37

20

3 22

40

102

Pointer

64

37

40

42

45

Monitors Readers and Writers Persistent Data Structures

Persistent Data Structures
Copying is O(n) in the worst case, but we can do better for many
tree-like types of data structure.

Example (Binary Search Tree)

64

37

20

3 22

40

102

Pointer

64

37

40

42

46

Monitors Readers and Writers Persistent Data Structures

Persistent Data Structures
Copying is O(n) in the worst case, but we can do better for many
tree-like types of data structure.

Example (Binary Search Tree)

64

37

20

3 22

40

102

Pointer

64

37

40

42

102

20

3 22

47

Monitors Readers and Writers Persistent Data Structures

Purely Functional Data Structures

Persistent data structures that exclusively make use of copying
over mutation are called purely functional data structures. They
are so called because operations on them are best expressed in the
form of mathematical functions that, given an input structure,
return a new output structure:

insert v Leaf = Branch v Leaf Leaf
insert v (Branch x l r) = if v ≤ x then

Branch x (insert v l) r
else
Branch x l (insert v r)

Purely functional programming languages like Haskell are designed
to facilitate programming in this way.

48

Monitors Readers and Writers Persistent Data Structures

What Now?

Next lecture, we’ll be looking at message-passing, the foundation
of distributed concurrency.
This homework involves Java programming. There are some
resources to assist you on the course website.
Assignment 1 is out this week, hopefully tonight.

49

	Monitors
	Monitors

	Readers and Writers
	Persistent Data Structures
	

