
Semaphores Producer-Consumer

Semaphores

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1



Semaphores Producer-Consumer

Where we are at

Last week, we saw critical section solutions, and how they are used
to implement locks (aka mutexes).

In this lecture, we will study semaphores and the producer
consumer problem.

2



Semaphores Producer-Consumer

Semaphores

First, an abstract view of semaphores:

Definition

A semaphore is a pair (v , L) of a natural number v and a set of
processes L. A semaphore must always be initialised to some (v , ∅).

v : how many more processes we can let in without
waiting.

L : the processes currently waiting to get in.

3



Semaphores Producer-Consumer

Semaphores

First, an abstract view of semaphores:

Definition

A semaphore is a pair (v , L) of a natural number v and a set of
processes L. A semaphore must always be initialised to some (v , ∅).

v : how many more processes we can let in without
waiting.

L : the processes currently waiting to get in.

4



Semaphores Producer-Consumer

Semaphores

First, an abstract view of semaphores:

Definition

A semaphore is a pair (v , L) of a natural number v and a set of
processes L. A semaphore must always be initialised to some (v , ∅).

v : how many more processes we can let in without
waiting.

L : the processes currently waiting to get in.

5



Semaphores Producer-Consumer

Semaphores

Definition

A process p can do two basic actions on a semaphore S :

wait(S) or P(S), decrements v if positive, otherwise adds p
to L and blocks p.

signal(S) or V (S), if L 6= ∅, unblocks a member of L.
Otherwise increment v .

Example (Promela Encoding)

1 inline wait(S) { d_step { S > 0; S-- }}

2 inline signal(S) { d_step { S ++ } }

This is called a busy-wait semaphore. The set L is implicitly the
set of (busy-)waiting processes on S > 0.

6



Semaphores Producer-Consumer

Semaphores

Definition

A process p can do two basic actions on a semaphore S :

wait(S) or P(S), decrements v if positive, otherwise adds p
to L and blocks p.

signal(S) or V (S), if L 6= ∅, unblocks a member of L.
Otherwise increment v .

Example (Promela Encoding)

1 inline wait(S) { d_step { S > 0; S-- }}

2 inline signal(S) { d_step { S ++ } }

This is called a busy-wait semaphore. The set L is implicitly the
set of (busy-)waiting processes on S > 0.

7



Semaphores Producer-Consumer

Semaphores

Definition

A process p can do two basic actions on a semaphore S :

wait(S) or P(S), decrements v if positive, otherwise adds p
to L and blocks p.

signal(S) or V (S), if L 6= ∅, unblocks a member of L.
Otherwise increment v .

Example (Promela Encoding)

1 inline wait(S) { d_step { S > 0; S-- }}

2 inline signal(S) { d_step { S ++ } }

This is called a busy-wait semaphore. The set L is implicitly the
set of (busy-)waiting processes on S > 0.

8



Semaphores Producer-Consumer

Critical Sections
Locks are just semaphores where the integer starts at 1:

semaphore S ← (1, ∅)
forever do forever do
p1 non-critical s. q1 non-critical s.
p2 wait (S) q2 wait (S);
p3 critical s. q3 critical s.
p4 signal (S) q4 signal (S);

p2q2
(1, ∅)

p4q2
(0, ∅)

p4q2
(0, {q})

p2q4
(0, ∅)

p2q4
(0, {p})

A weak semaphore is like our set model earlier. A busy-wait
semaphore has no set, and implements blocking by spinning in a
loop.

Question

What impact does weak vs. busy-wait have on eventual entry?

9



Semaphores Producer-Consumer

Critical Sections
Locks are just semaphores where the integer starts at 1:

semaphore S ← (1, ∅)
forever do forever do
p1 non-critical s. q1 non-critical s.
p2 wait (S) q2 wait (S);
p3 critical s. q3 critical s.
p4 signal (S) q4 signal (S);

p2q2
(1, ∅)

p4q2
(0, ∅)

p4q2
(0, {q})

p2q4
(0, ∅)

p2q4
(0, {p})

A weak semaphore is like our set model earlier. A busy-wait
semaphore has no set, and implements blocking by spinning in a
loop.

Question

What impact does weak vs. busy-wait have on eventual entry?

10



Semaphores Producer-Consumer

Critical Sections
Locks are just semaphores where the integer starts at 1:

semaphore S ← (1, ∅)
forever do forever do
p1 non-critical s. q1 non-critical s.
p2 wait (S) q2 wait (S);
p3 critical s. q3 critical s.
p4 signal (S) q4 signal (S);

p2q2
(1, ∅)

p4q2
(0, ∅)

p4q2
(0, {q})

p2q4
(0, ∅)

p2q4
(0, {p})

A weak semaphore is like our set model earlier. A busy-wait
semaphore has no set, and implements blocking by spinning in a
loop.

Question

What impact does weak vs. busy-wait have on eventual entry?

11



Semaphores Producer-Consumer

For N processes

semaphore S ← (1, ∅)
each process i :
forever do
i1 non-critical section
i2 wait (S)
i3 critical section
i4 signal (S)

Problem 1: With a weak or busy-wait
semaphore we don’t get eventual entry.
Problem 2: Even with strong fairness,
we don’t have linear waiting.

Strong Semaphores

Replace the set L with a queue, wake processes up in
FIFO order.
This guarantees linear waiting, but is harder to
implement and potentially more expensive.

12



Semaphores Producer-Consumer

For N processes

semaphore S ← (1, ∅)
each process i :
forever do
i1 non-critical section
i2 wait (S)
i3 critical section
i4 signal (S)

Problem 1: With a weak or busy-wait
semaphore we don’t get eventual entry.
Problem 2: Even with strong fairness,
we don’t have linear waiting.

Strong Semaphores

Replace the set L with a queue, wake processes up in
FIFO order.
This guarantees linear waiting, but is harder to
implement and potentially more expensive.

13



Semaphores Producer-Consumer

For N processes

semaphore S ← (1, ∅)
each process i :
forever do
i1 non-critical section
i2 wait (S)
i3 critical section
i4 signal (S)

Problem 1: With a weak or busy-wait
semaphore we don’t get eventual entry.
Problem 2: Even with strong fairness,
we don’t have linear waiting.

Strong Semaphores

Replace the set L with a queue, wake processes up in
FIFO order.
This guarantees linear waiting, but is harder to
implement and potentially more expensive.

14



Semaphores Producer-Consumer

Reasoning about Semaphores
For a semaphore S = (v , L) initialised to (k , ∅), the following
invariants always hold:

1 v = k + #signal(S)−#wait(S)
2 v ≥ 0

Definitions

1 #signal(S): how many times signal(S) has successfully
executed.

2 #wait(S): how many times wait(S) has successfully executed.

A successful execution happens when the process has proceeded to
the next statement. So if a process is blocked on a wait(S), then
#wait(S) will not increase until the process is unblocked.

Example (Mutual Exclusion)

The no. of processes in their CS = #wait(S)−#signal(S). Let’s
use this to show our usual properties.

15



Semaphores Producer-Consumer

Reasoning about Semaphores
For a semaphore S = (v , L) initialised to (k , ∅), the following
invariants always hold:

1 v = k + #signal(S)−#wait(S)
2 v ≥ 0

Definitions

1 #signal(S): how many times signal(S) has successfully
executed.

2 #wait(S): how many times wait(S) has successfully executed.

A successful execution happens when the process has proceeded to
the next statement. So if a process is blocked on a wait(S), then
#wait(S) will not increase until the process is unblocked.

Example (Mutual Exclusion)

The no. of processes in their CS = #wait(S)−#signal(S). Let’s
use this to show our usual properties.

16



Semaphores Producer-Consumer

Reasoning about Semaphores
For a semaphore S = (v , L) initialised to (k , ∅), the following
invariants always hold:

1 v = k + #signal(S)−#wait(S)
2 v ≥ 0

Definitions

1 #signal(S): how many times signal(S) has successfully
executed.

2 #wait(S): how many times wait(S) has successfully executed.

A successful execution happens when the process has proceeded to
the next statement. So if a process is blocked on a wait(S), then
#wait(S) will not increase until the process is unblocked.

Example (Mutual Exclusion)

The no. of processes in their CS = #wait(S)−#signal(S). Let’s
use this to show our usual properties.

17



Semaphores Producer-Consumer

Reasoning about Semaphores
For a semaphore S = (v , L) initialised to (k , ∅), the following
invariants always hold:

1 v = k + #signal(S)−#wait(S)
2 v ≥ 0

Definitions

1 #signal(S): how many times signal(S) has successfully
executed.

2 #wait(S): how many times wait(S) has successfully executed.

A successful execution happens when the process has proceeded to
the next statement. So if a process is blocked on a wait(S), then
#wait(S) will not increase until the process is unblocked.

Example (Mutual Exclusion)

The no. of processes in their CS = #wait(S)−#signal(S). Let’s
use this to show our usual properties.

18



Semaphores Producer-Consumer

Reasoning about Semaphores
For a semaphore S = (v , L) initialised to (k , ∅), the following
invariants always hold:

1 v = k + #signal(S)−#wait(S)
2 v ≥ 0

Definitions

1 #signal(S): how many times signal(S) has successfully
executed.

2 #wait(S): how many times wait(S) has successfully executed.

A successful execution happens when the process has proceeded to
the next statement. So if a process is blocked on a wait(S), then
#wait(S) will not increase until the process is unblocked.

Example (Mutual Exclusion)

The no. of processes in their CS = #wait(S)−#signal(S). Let’s
use this to show our usual properties.

19



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).
Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

20



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).
Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

21



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).
Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

22



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).
Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

23



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).

Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

24



Semaphores Producer-Consumer

Safety Properties

Mutual Exclusion

We know:

1 v = 1 + #signal(S)−#wait(S) (our first semaphore
invariant)

2 v ≥ 0 (our second semaphore invariant)

3 #CS = #wait(S)−#signal(S) (our observed invariant)

From these invariants it is possible to show that #CS ≤ 1, i.e.
mutual exclusion.

Absence of Deadlock

Assume that deadlock occurs by all processes being blocked on
wait, so no process can enter its critical section (#CS = 0).
Then v = 0, contradicting our semaphore invariants above. So
there cannot be deadlock.

25



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.

Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

26



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.

We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

27



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

28



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

29



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.

Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

30



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.

We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

31



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).

Thus, p will be unblocked, causing it to gain entry —
Contradiction.

32



Semaphores Producer-Consumer

Liveness Properties

To simplify things, we will prove for only two processes, p and q.

Eventual Entry for p (with weak semaphores)

Assume that p is starved, indefinitely blocked on the
wait.Therefore S = (0, L) and p ∈ L.
We know therefore, substituting into our invariants:

1 0 = 1 + #signal(S)−#wait(S)

2 #CS = #wait(S)−#signal(S)

From which we can conclude that #CS = 1.Therefore q must be
in its critical section and L = {p}.
We know (or rather, assume) that eventually q will eventually
finish its CS and signal(S).
Thus, p will be unblocked, causing it to gain entry —
Contradiction.

33



Semaphores Producer-Consumer

Rendezvous

In addition (and perhaps simpler) than the mutual
exclusion/critical section problem, the rendezvous problem is also a
basic unit of synchronisation for solving concurrency problems.
Assume we have two processes with two statements each:

Rendezvous
P Q

firstP firstQ
secondP secondQ

Problem

How do we ensure that all first statements happen before all
second statements?
In Java

34



Semaphores Producer-Consumer

Rendezvous

In addition (and perhaps simpler) than the mutual
exclusion/critical section problem, the rendezvous problem is also a
basic unit of synchronisation for solving concurrency problems.
Assume we have two processes with two statements each:

Rendezvous
P Q

firstP firstQ
secondP secondQ

Problem

How do we ensure that all first statements happen before all
second statements?
In Java

35



Semaphores Producer-Consumer

Producer-Consumer
Binary semaphores (aka locks) are not the only use of semaphores!

Producer-Consumer Problem

A producer process and a consumer process share access to a
shared buffer of data. This buffer acts as a queue. The producer
adds messages to the queue, and the consumer reads messages
from the queue. If there are no messages in the queue, the
consumer blocks until there are messages.

Algorithm 1.1: Producer-consumer (infinite buffer)
queue[T] buffer ← empty queue; semaphore full ← (0, ∅)

producer consumer
T d T d
forever do forever do

p1: d ← produce q1: wait(full)
p2: append(d, buffer) q2: d ← take(buffer)
p3: signal(full) q3: consume(d)

36



Semaphores Producer-Consumer

Producer-Consumer
Binary semaphores (aka locks) are not the only use of semaphores!

Producer-Consumer Problem

A producer process and a consumer process share access to a
shared buffer of data. This buffer acts as a queue. The producer
adds messages to the queue, and the consumer reads messages
from the queue. If there are no messages in the queue, the
consumer blocks until there are messages.

Algorithm 1.2: Producer-consumer (infinite buffer)
queue[T] buffer ← empty queue; semaphore full ← (0, ∅)

producer consumer
T d T d
forever do forever do

p1: d ← produce q1: wait(full)
p2: append(d, buffer) q2: d ← take(buffer)
p3: signal(full) q3: consume(d)

37



Semaphores Producer-Consumer

Producer-Consumer
Binary semaphores (aka locks) are not the only use of semaphores!

Producer-Consumer Problem

A producer process and a consumer process share access to a
shared buffer of data. This buffer acts as a queue. The producer
adds messages to the queue, and the consumer reads messages
from the queue. If there are no messages in the queue, the
consumer blocks until there are messages.

Algorithm 1.3: Producer-consumer (infinite buffer)
queue[T] buffer ← empty queue; semaphore full ← (0, ∅)

producer consumer
T d T d
forever do forever do

p1: d ← produce q1: wait(full)
p2: append(d, buffer) q2: d ← take(buffer)
p3: signal(full) q3: consume(d)

38



Semaphores Producer-Consumer

Finite buffer
What if the buffer has finite space, and we don’t want to lose
messages?

Use another semaphore!

Algorithm 1.4: Producer-consumer (finite buffer, semaphores)
bounded[N] queue[T] buffer ← empty queue
semaphore full ← (0, ∅)
semaphore empty ← (N, ∅)

producer consumer
T d T d
loop forever loop forever

p1: d ← produce q1: wait(full)
p2: wait(empty) q2: d ← take(buffer)
p3: append(d, buffer) q3: signal(empty)
p4: signal(full) q4: consume(d)

This pattern is called split semaphores.

39



Semaphores Producer-Consumer

Finite buffer
What if the buffer has finite space, and we don’t want to lose
messages?
Use another semaphore!

Algorithm 1.5: Producer-consumer (finite buffer, semaphores)
bounded[N] queue[T] buffer ← empty queue
semaphore full ← (0, ∅)
semaphore empty ← (N, ∅)

producer consumer
T d T d
loop forever loop forever

p1: d ← produce q1: wait(full)
p2: wait(empty) q2: d ← take(buffer)
p3: append(d, buffer) q3: signal(empty)
p4: signal(full) q4: consume(d)

This pattern is called split semaphores.

40



Semaphores Producer-Consumer

Finite buffer
What if the buffer has finite space, and we don’t want to lose
messages?
Use another semaphore!

Algorithm 1.6: Producer-consumer (finite buffer, semaphores)
bounded[N] queue[T] buffer ← empty queue
semaphore full ← (0, ∅)
semaphore empty ← (N, ∅)

producer consumer
T d T d
loop forever loop forever

p1: d ← produce q1: wait(full)
p2: wait(empty) q2: d ← take(buffer)
p3: append(d, buffer) q3: signal(empty)
p4: signal(full) q4: consume(d)

This pattern is called split semaphores.
41



Semaphores Producer-Consumer

A specific Example

Algorithm 1.7: Producer/Consumer (b-place buffer, sem’s)
integer data[b]
semaphore empty ← (b, ∅), full ← (0, ∅)

producer consumer
integer i ← 0 integer k ← 0, t ← 0
loop forever loop forever

p1: wait(empty) q1: wait(full)
p2: data[i % b] ← g(i) q2: t ← t + data[k % b]
p3: i++ q3: k++
p4: signal(full) q4: signal(empty)

42



Semaphores Producer-Consumer

What do we prove?

The crucial properties of this pair of processes include:

safety S =
(
t =

∑k−1
j=0 g(j)

)
is an invariant

liveness k keeps increasing

43



Semaphores Producer-Consumer

How do we prove?

To show the safety property, we

1 translate the pseudo code into transition diagrams,

2 define a pre-condition φ

3 define an assertion network Q,

4 prove that Q is (a) inductive and (b) interference-free,

5 prove that the initial assertions Qp1 and Qq1 follow from φ,
and

6 prove that each of the consumer’s assertions implies the
invariant S .

44



Semaphores Producer-Consumer

1 Transition Diagrams

p4

p2p1

f ++

e > 0; e--

data[i%b], i ←
g(i), i + 1

q4

q2q1

e++

f > 0; f --

t, k ←
t + data[k%b], k + 1

45



Semaphores Producer-Consumer

2 Precondition

As precondition we collect the initial values of those global and
local variables which are read before they are written.

φ = (e = b ∧ f = 0 ∧ i = k = t = 0)

46



Semaphores Producer-Consumer

3 Assertion Network I

We start by collecting further likely invariants.

The consumer can’t overtake the producer:

0 ≤ k ≤ i (1)

The producer can’t lap the consumer:

i − k ≤ b (2)

The buffer shows a subsequence of g ’s values:

∀j ∈ a..i − 1 (data[j%b] = g(j)) , where a = max(0, i − b) (3)

47



Semaphores Producer-Consumer

3 Assertion Network II

semaphore invariants:

e, f ∈ 0..b (4)

e = b + #signal(e)−#wait(e) (5)

f = #signal(f )−#wait(f ) (6)

numbers of waits and signals are correlated:

#wait(e) = #signal(f ) + 1− p1 = i + p2 (7)

#signal(f ) = #wait(e)− p2,4 = i − p4 (8)

#wait(f ) = #signal(e) + 1− q1 = k + q2 (9)

#signal(e) = #wait(f )− q2,4 = k − q4 (10)

48



Semaphores Producer-Consumer

3 Assertion Network III

semaphore values are correlated:

e + f = b − p2,4 − q2,4 (11)

our goal:

S (12)

Assuming that the invariants (1)–(12) gather all that’s going on
we may now try to prove that the assertion network consisting of
the same assertion,

I = (1) ∧ . . . ∧ (12)

at every location is inductive and interference-free.

49



Semaphores Producer-Consumer

4(a) Q is inductive

We need to prove local correctness of each of the 6 transitions.
We assume that the auxiliary variables p1, p2, p4, q1, q2, and q4
are implicitly set to 0 resp. 1, depending on the locations.

p1 → p2: |= I ∧ e > 0 =⇒ I ◦ (e ← e − 1) (13)

p2 → p4: |= I =⇒ I ◦ (data[i%b], i ← g(i), i + 1) (14)

p4 → p1: |= I =⇒ I ◦ (f ← f + 1) (15)

q1 → q2: |= I ∧ f > 0 =⇒ I ◦ (f ← f − 1) (16)

q2 → q4: |= I =⇒ I ◦ (t, k ← t + data[k%b], i + 1) (17)

q4 → q1: |= I =⇒ I ◦ (e ← e + 1) (18)

50



Semaphores Producer-Consumer

4(b) Q is interference-free

Finally it pays off to give such a degenerate assertion network:
interference-freedom comes for free since we’ve proved inductivity
(local correctness) already.

51



Semaphores Producer-Consumer

5 φ is strong enough

Since all assertions are the same, we only need to show that (at p1
and q1):

φ =⇒ I

which is straightforward.

6 S follows from Q

Trivially true since S is the last conjunct of I.

52



Semaphores Producer-Consumer

Liveness

Deadlock Freedom

The only global location with a potential for deadlock would be
p1/q1.
Constant b > 0 and invariant (11) ensure that at p1/q1, not both
semaphores can be 0.

Liveness Property

Suppose one of the processes (say the consumer) is stuck at
location 1 forever, and thus k does not increase.
Then, by deadlock-freedom, the producer would have to keep
going indefinitely without ever incrementing f —but it does so
every round.

53



Semaphores Producer-Consumer

Liveness

Deadlock Freedom

The only global location with a potential for deadlock would be
p1/q1.
Constant b > 0 and invariant (11) ensure that at p1/q1, not both
semaphores can be 0.

Liveness Property

Suppose one of the processes (say the consumer) is stuck at
location 1 forever, and thus k does not increase.

Then, by deadlock-freedom, the producer would have to keep
going indefinitely without ever incrementing f —but it does so
every round.

54



Semaphores Producer-Consumer

Liveness

Deadlock Freedom

The only global location with a potential for deadlock would be
p1/q1.
Constant b > 0 and invariant (11) ensure that at p1/q1, not both
semaphores can be 0.

Liveness Property

Suppose one of the processes (say the consumer) is stuck at
location 1 forever, and thus k does not increase.
Then, by deadlock-freedom, the producer would have to keep
going indefinitely without ever incrementing f —but it does so
every round.

55



Semaphores Producer-Consumer

What Now?

Next lecture, we’ll be looking at Monitors and the Readers and
Writers problem.
This week’s homework involves Java programming. There’s a
number of resources (prepared by Vladimir Tosic) on the website
to assist you.
Assignment 1 is also coming out this week.

56


	Semaphores
	Producer-Consumer
	

