
CCS

The Calculus of Communicating Systems

Johannes Åman Pohjola
UNSW

Term 2 2022

1

CCS

Where we are at

Last lecture, we studied compositional proof techniques.

This lecture, we’ll take a brief detour into the world of process algebra, a high level
formalism for describing concurrent systems.

Many of the resources for this lecture were borrowed from Graham Hutton.

2

CCS

CCS

The Calculus of Communicating Systems:

Is a process algebra, a simple formal language to describe concurrent systems.

Is given semantics in terms of labelled transition systems.

Was developed by Turing-award winner Robin Milner in the 1980s.

Has an abstract view of synchronization that applies well to message passing.

Why do we learn this?

This gives us a symbolic way to describe our transition diagrams, and reason about
them algebraically rather than diagramatically.

3

CCS

CCS

The Calculus of Communicating Systems:

Is a process algebra, a simple formal language to describe concurrent systems.

Is given semantics in terms of labelled transition systems.

Was developed by Turing-award winner Robin Milner in the 1980s.

Has an abstract view of synchronization that applies well to message passing.

Why do we learn this?

This gives us a symbolic way to describe our transition diagrams, and reason about
them algebraically rather than diagramatically.

4

CCS

CCS

The Calculus of Communicating Systems:

Is a process algebra, a simple formal language to describe concurrent systems.

Is given semantics in terms of labelled transition systems.

Was developed by Turing-award winner Robin Milner in the 1980s.

Has an abstract view of synchronization that applies well to message passing.

Why do we learn this?

This gives us a symbolic way to describe our transition diagrams, and reason about
them algebraically rather than diagramatically.

5

CCS

CCS

The Calculus of Communicating Systems:

Is a process algebra, a simple formal language to describe concurrent systems.

Is given semantics in terms of labelled transition systems.

Was developed by Turing-award winner Robin Milner in the 1980s.

Has an abstract view of synchronization that applies well to message passing.

Why do we learn this?

This gives us a symbolic way to describe our transition diagrams, and reason about
them algebraically rather than diagramatically.

6

CCS

Processes
Processes in CCS are defined by equations:

Example

The equation:
CLOCK = tick

defines a process CLOCK that simply executes the action “tick” and then terminates.
This process corresponds to the first location in this labelled transition system (LTS):

•

•

tick

An LTS is like a transition diagram, save that our transitions are just abstract actions
and we have no initial or final location.

7

CCS

Action Prefixing

Example

CLOCK2 = tick.tock

defines a process called CLOCK2 that
executes the action “tick” then the
action “tock” and then terminates.

• • •tick tock

The process:

CLOCK3 = tock.tick

has the same actions as CLOCK2 but
arranges them in another order.

Definition

If a is an action and P is a process,
then x .P is a process that executes x
before P. This brackets to the right, so:

x .y .z .P = x .(y .(z .P))

Stopping

More precisely, we should write:

CLOCK2 = tick.tock.STOP

where STOP is the trivial process with
no transitions.

8

CCS

Action Prefixing

Example

CLOCK2 = tick.tock

defines a process called CLOCK2 that
executes the action “tick” then the
action “tock” and then terminates.

• • •tick tock

The process:

CLOCK3 = tock.tick

has the same actions as CLOCK2 but
arranges them in another order.

Definition

If a is an action and P is a process,
then x .P is a process that executes x
before P. This brackets to the right, so:

x .y .z .P = x .(y .(z .P))

Stopping

More precisely, we should write:

CLOCK2 = tick.tock.STOP

where STOP is the trivial process with
no transitions.

9

CCS

Action Prefixing

Example

CLOCK2 = tick.tock

defines a process called CLOCK2 that
executes the action “tick” then the
action “tock” and then terminates.

• • •tick tock

The process:

CLOCK3 = tock.tick

has the same actions as CLOCK2 but
arranges them in another order.

Definition

If a is an action and P is a process,
then x .P is a process that executes x
before P. This brackets to the right, so:

x .y .z .P = x .(y .(z .P))

Stopping

More precisely, we should write:

CLOCK2 = tick.tock.STOP

where STOP is the trivial process with
no transitions.

10

CCS

Loops

Up to now, all processes make a finite number of transitions and then terminate.
Processes that can make a infinite number of transitions can be pictured by allowing
loops:

Example (Loops)

•

tick the process that diverges
executing “tick” transitions

=
•

•
ticktock

tick
= the process that alternates

“tick” and “tock” forever

CLOCK4 = tick.CLOCK4 CLOCK5 = tick.tock.CLOCK5

We accomplish loops in CCS using recursion.

11

CCS

Loops

Up to now, all processes make a finite number of transitions and then terminate.
Processes that can make a infinite number of transitions can be pictured by allowing
loops:

Example (Loops)

•

tick the process that diverges
executing “tick” transitions

=
•

•
ticktock

tick
= the process that alternates

“tick” and “tock” forever

CLOCK4 = tick.CLOCK4 CLOCK5 = tick.tock.CLOCK5

We accomplish loops in CCS using recursion.

12

CCS

Equality of Processes

These two processes are physically different:

•

tick

•

•
ticktick

tick

CLOCK4 = tick.CLOCK4 CLOCK6 = tick.tick.CLOCK6

But they both have the same behaviour — an infinite sequence of “tick” transitions.

Informal Definition

We consider two process to be equal if an external observer cannot distinguish them by
their actions.
We will refine this definition later.

13

CCS

Equality of Processes

These two processes are physically different:

•

tick

•

•
ticktick

tick

CLOCK4 = tick.CLOCK4 CLOCK6 = tick.tick.CLOCK6

But they both have the same behaviour — an infinite sequence of “tick” transitions.

Informal Definition

We consider two process to be equal if an external observer cannot distinguish them by
their actions.
We will refine this definition later.

14

CCS

Equality of Processes

These two processes are physically different:

•

tick

•

•
ticktick

tick

CLOCK4 = tick.CLOCK4 CLOCK6 = tick.tick.CLOCK6

But they both have the same behaviour — an infinite sequence of “tick” transitions.

Informal Definition

We consider two process to be equal if an external observer cannot distinguish them by
their actions.
We will refine this definition later.

15

CCS

A Simple Vending Machine

Vending Machines are very common examples for process algebra.

Example (An inflexible machine)

Suppose I define my vending machine as:

VM1 = in50¢.outCoke.in20¢.outMars.VM1

• •

••

in50¢

outCoke

in20¢

outMars

This machine is not very flexible:

It only accepts exact money.

The customer has no choice: The machine dispenses Coke and Mars bars
alternately.

16

CCS

A Simple Vending Machine

Vending Machines are very common examples for process algebra.

Example (An inflexible machine)

Suppose I define my vending machine as:

VM1 = in50¢.outCoke.in20¢.outMars.VM1

• •

••

in50¢

outCoke

in20¢

outMars

This machine is not very flexible:

It only accepts exact money.

The customer has no choice: The machine dispenses Coke and Mars bars
alternately.

17

CCS

Choice
To make a more flexible kind of vending machine, we need a (nondeterministic) choice
operator.

Example

VM2 = (in50¢.outCoke.VM2) + (in20¢.outMars.VM2)

•

••

in50¢

outCoke

in20¢

outMars

Here we have a process VM2 that repeatedly either inputs 50¢ and outputs a coke, or
inputs 20¢ and outputs a mars bar.

Definition

If P and Q are processes then P + Q is a process which can either behave as the
process P or the process Q.

18

CCS

Choice
To make a more flexible kind of vending machine, we need a (nondeterministic) choice
operator.

Example

VM2 = (in50¢.outCoke.VM2) + (in20¢.outMars.VM2)

•

••

in50¢

outCoke

in20¢

outMars

Here we have a process VM2 that repeatedly either inputs 50¢ and outputs a coke, or
inputs 20¢ and outputs a mars bar.

Definition

If P and Q are processes then P + Q is a process which can either behave as the
process P or the process Q.

19

CCS

Choice
To make a more flexible kind of vending machine, we need a (nondeterministic) choice
operator.

Example

VM2 = (in50¢.outCoke.VM2) + (in20¢.outMars.VM2)

•

••

in50¢

outCoke

in20¢

outMars

Here we have a process VM2 that repeatedly either inputs 50¢ and outputs a coke, or
inputs 20¢ and outputs a mars bar.

Definition

If P and Q are processes then P + Q is a process which can either behave as the
process P or the process Q.

20

CCS

Choice Equalities
Observe that we have the following identities about choice:

P + (Q + R) = (P + Q) + R (associativity)

P + Q = Q + P (commutativity)
P + STOP = P (neutral element)
P + P = P (idempotence)

What about the equation:

a.(P + Q)

•

•

(a.P) + (a.Q)?
=

•

• •
a

a a

P Q P Q

?
=

21

CCS

Choice Equalities
Observe that we have the following identities about choice:

P + (Q + R) = (P + Q) + R (associativity)
P + Q = Q + P (commutativity)

P + STOP = P (neutral element)
P + P = P (idempotence)

What about the equation:

a.(P + Q)

•

•

(a.P) + (a.Q)?
=

•

• •
a

a a

P Q P Q

?
=

22

CCS

Choice Equalities
Observe that we have the following identities about choice:

P + (Q + R) = (P + Q) + R (associativity)
P + Q = Q + P (commutativity)
P + STOP = P (neutral element)

P + P = P (idempotence)

What about the equation:

a.(P + Q)

•

•

(a.P) + (a.Q)?
=

•

• •
a

a a

P Q P Q

?
=

23

CCS

Choice Equalities
Observe that we have the following identities about choice:

P + (Q + R) = (P + Q) + R (associativity)
P + Q = Q + P (commutativity)
P + STOP = P (neutral element)
P + P = P (idempotence)

What about the equation:

a.(P + Q)

•

•

(a.P) + (a.Q)?
=

•

• •
a

a a

P Q P Q

?
=

24

CCS

Choice Equalities
Observe that we have the following identities about choice:

P + (Q + R) = (P + Q) + R (associativity)
P + Q = Q + P (commutativity)
P + STOP = P (neutral element)
P + P = P (idempotence)

What about the equation:

a.(P + Q)

•

•

(a.P) + (a.Q)?
=

•

• •
a

a a

P Q P Q

?
=

25

CCS

Branching Time
Example

VM3 = in50¢.(outCoke + outPepsi)
VM4 = (in50¢.outCoke) + (in50¢.outPepsi)

Or in pictures:

•

•

• •

in50¢

outCoke outPepsi

•

• •

• •

in50¢ in50¢

outCoke outPepsi

Reactive Systems

VM3 allows the customer to choose which drink to vend after inserting 50¢. In VM4

however, the machine makes the choice when the customer inserts a coin.
They are different in this reactive view, but they have the same behaviours!

26

CCS

Branching Time
Example

VM3 = in50¢.(outCoke + outPepsi)
VM4 = (in50¢.outCoke) + (in50¢.outPepsi)

Or in pictures:

•

•

• •

in50¢

outCoke outPepsi

•

• •

• •

in50¢ in50¢

outCoke outPepsi

Reactive Systems

VM3 allows the customer to choose which drink to vend after inserting 50¢. In VM4

however, the machine makes the choice when the customer inserts a coin.

They are different in this reactive view, but they have the same behaviours!

27

CCS

Branching Time
Example

VM3 = in50¢.(outCoke + outPepsi)
VM4 = (in50¢.outCoke) + (in50¢.outPepsi)

Or in pictures:

•

•

• •

in50¢

outCoke outPepsi

•

• •

• •

in50¢ in50¢

outCoke outPepsi

Reactive Systems

VM3 allows the customer to choose which drink to vend after inserting 50¢. In VM4

however, the machine makes the choice when the customer inserts a coin.
They are different in this reactive view, but they have the same behaviours!

28

CCS

Equivalences

The equation
a.(P + Q) = (a.P) + (a.Q)

is usually not admitted for this reason.

Exercise

It is possible to construct two processes that are equal assuming this equation but do
not have the same set of behaviours (and thus do not satisfy the same LTL properties).

If we do admit it, then our notion of equality is very coarse (it is called partial trace
equivalence). This is enough if we want to prove safety properties, but progress is not
guaranteed. Johannes: Explain why

Terminology

Our notion of equality without this equation is called (strong) bisimilarity.

29

CCS

Equivalences

The equation
a.(P + Q) = (a.P) + (a.Q)

is usually not admitted for this reason.

Exercise

It is possible to construct two processes that are equal assuming this equation but do
not have the same set of behaviours (and thus do not satisfy the same LTL properties).

If we do admit it, then our notion of equality is very coarse (it is called partial trace
equivalence). This is enough if we want to prove safety properties, but progress is not
guaranteed. Johannes: Explain why

Terminology

Our notion of equality without this equation is called (strong) bisimilarity.

30

CCS

Equivalences

The equation
a.(P + Q) = (a.P) + (a.Q)

is usually not admitted for this reason.

Exercise

It is possible to construct two processes that are equal assuming this equation but do
not have the same set of behaviours (and thus do not satisfy the same LTL properties).

If we do admit it, then our notion of equality is very coarse (it is called partial trace
equivalence). This is enough if we want to prove safety properties, but progress is not
guaranteed. Johannes: Explain why

Terminology

Our notion of equality without this equation is called (strong) bisimilarity.

31

CCS

Equivalences

The equation
a.(P + Q) = (a.P) + (a.Q)

is usually not admitted for this reason.

Exercise

It is possible to construct two processes that are equal assuming this equation but do
not have the same set of behaviours (and thus do not satisfy the same LTL properties).

If we do admit it, then our notion of equality is very coarse (it is called partial trace
equivalence). This is enough if we want to prove safety properties, but progress is not
guaranteed. Johannes: Explain why

Terminology

Our notion of equality without this equation is called (strong) bisimilarity.

32

CCS

Exercises

A clock that can stop at any time.

A clock that ticks or tocks at each cycle.

A clock that ticks each cycle or tocks each cycle.

A vending machine for Mars and Coke that gives change.

33

CCS

Exercises

A clock that can stop at any time.

A clock that ticks or tocks at each cycle.

A clock that ticks each cycle or tocks each cycle.

A vending machine for Mars and Coke that gives change.

34

CCS

Exercises

A clock that can stop at any time.

A clock that ticks or tocks at each cycle.

A clock that ticks each cycle or tocks each cycle.

A vending machine for Mars and Coke that gives change.

35

CCS

Exercises

A clock that can stop at any time.

A clock that ticks or tocks at each cycle.

A clock that ticks each cycle or tocks each cycle.

A vending machine for Mars and Coke that gives change.

36

CCS

Parallel Composition

Definition

If P and Q are processes then P | Q is the parallel composition of their processes —
i.e. the non-deterministic interleaving of their actions.

Example (Clocks)

ACLOCK = tick.beep | tock

• • •

• • •

tick beep

tock

CCLOCK = TICLK|TOCLK

TICLK = tick.TICLK

TOCLK = tock.TOCLK

Exercise: Express these processes without parallel composition.

37

CCS

Parallel Composition

Definition

If P and Q are processes then P | Q is the parallel composition of their processes —
i.e. the non-deterministic interleaving of their actions.

Example (Clocks)

ACLOCK = tick.beep | tock

• • •

• • •

tick beep

tock

CCLOCK = TICLK|TOCLK

TICLK = tick.TICLK

TOCLK = tock.TOCLK

Exercise: Express these processes without parallel composition.

38

CCS

Synchronization
In CCS, every action a has an opposing coaction a (and a = a):

Actions: tick tock in50¢ outCoke . . .

Coactions: tick tock in50¢ outCoke . . .

It is a convention to think of an action as an output event and a coaction as an input
event. If a system can execute both an action and its coaction, it may execute them
both simultaneously by taking an internal transition marked by the special action τ .

Example (Relay Race)

RACE = RUN1 | RUN2

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

39

CCS

Synchronization
In CCS, every action a has an opposing coaction a (and a = a):

Actions: tick tock in50¢ outCoke . . .

Coactions: tick tock in50¢ outCoke . . .

It is a convention to think of an action as an output event and a coaction as an input
event. If a system can execute both an action and its coaction, it may execute them
both simultaneously by taking an internal transition marked by the special action τ .

Example (Relay Race)

RACE = RUN1 | RUN2

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

40

CCS

Synchronization
In CCS, every action a has an opposing coaction a (and a = a):

Actions: tick tock in50¢ outCoke . . .

Coactions: tick tock in50¢ outCoke . . .

It is a convention to think of an action as an output event and a coaction as an input
event. If a system can execute both an action and its coaction, it may execute them
both simultaneously by taking an internal transition marked by the special action τ .

Example (Relay Race)

RACE = RUN1 | RUN2

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

41

CCS

Expansion Theorem
Let P and Q be processes. By expanding recursive definitions and using our existing
equations for choice we can express P and Q as n-ary choices of action prefixes:

P =
∑

i∈I αi . Pi and Q =
∑

j∈J βj . Qj .

Then, the parallel composition can be expressed as follows:

P | Q =
∑
i∈I

αi .(Pi | Q) +
∑
j∈J

βj .(P | Qj) +
∑

i∈I , j∈J, αi=βj

τ.(Pi | Qj).

From this, many useful equations are derivable:

P | Q = Q | P
P | (Q | R) = (P | Q) | R
P | STOP = P

42

CCS

Expansion Theorem
Let P and Q be processes. By expanding recursive definitions and using our existing
equations for choice we can express P and Q as n-ary choices of action prefixes:

P =
∑

i∈I αi . Pi and Q =
∑

j∈J βj . Qj .

Then, the parallel composition can be expressed as follows:

P | Q =
∑
i∈I

αi .(Pi | Q) +
∑
j∈J

βj .(P | Qj) +
∑

i∈I , j∈J, αi=βj

τ.(Pi | Qj).

From this, many useful equations are derivable:

P | Q = Q | P
P | (Q | R) = (P | Q) | R
P | STOP = P

43

CCS

Expansion Theorem
Let P and Q be processes. By expanding recursive definitions and using our existing
equations for choice we can express P and Q as n-ary choices of action prefixes:

P =
∑

i∈I αi . Pi and Q =
∑

j∈J βj . Qj .

Then, the parallel composition can be expressed as follows:

P | Q =
∑
i∈I

αi .(Pi | Q) +
∑
j∈J

βj .(P | Qj) +
∑

i∈I , j∈J, αi=βj

τ.(Pi | Qj).

From this, many useful equations are derivable:

P | Q = Q | P
P | (Q | R) = (P | Q) | R
P | STOP = P

44

CCS

Restriction
We wish a way to say “these are all the processes that there are”, in other words, to
force synchronization to happen and not allow certain actions to be taken alone.

Definition

If P is a process and a is an action (not τ), then P \ a is the same as the process P
except that the actions a and a may not be executed. We have

(a.P) \ b = a.(P \ b) if a /∈ {b, b}

Example (Relay Race)

RACE = (RUN1 | RUN2) \ baton

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

45

CCS

Restriction
We wish a way to say “these are all the processes that there are”, in other words, to
force synchronization to happen and not allow certain actions to be taken alone.

Definition

If P is a process and a is an action (not τ), then P \ a is the same as the process P
except that the actions a and a may not be executed. We have

(a.P) \ b = a.(P \ b) if a /∈ {b, b}

Example (Relay Race)

RACE = (RUN1 | RUN2) \ baton

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

46

CCS

Restriction
We wish a way to say “these are all the processes that there are”, in other words, to
force synchronization to happen and not allow certain actions to be taken alone.

Definition

If P is a process and a is an action (not τ), then P \ a is the same as the process P
except that the actions a and a may not be executed. We have

(a.P) \ b = a.(P \ b) if a /∈ {b, b}

Example (Relay Race)

RACE = (RUN1 | RUN2) \ baton

RUN1 = start.baton

RUN2 = baton.finish

•

•

•

•

•

•

•

•

•

baton

finish

start baton

τ

47

CCS

Another Example

A man that eats every time a clock ticks:

CLOCK4 = tick.CLOCK4

MAN = tick.eat.MAN

EXAMPLE = (MAN | CLOCK4) \ tick

After deriving the picture, we get:

• •
τ

eat

48

CCS

Another Example

A man that eats every time a clock ticks:

CLOCK4 = tick.CLOCK4

MAN = tick.eat.MAN

EXAMPLE = (MAN | CLOCK4) \ tick

After deriving the picture, we get:

• •
τ

eat

49

CCS

Semantics
Up until now, our semantics were given informally in terms of pictures. Now we will
formalise our semantic intuitions.

Our set of locations in our labelled transition system will be the set of all CCS
processes. Locations can now be labelled with what process they are:

50¢.(coke + pepsi)

coke + pepsi

STOP STOP

50¢

coke pepsi

We will now define what transitions exist in our LTS by means of a set of inference
rules. This technique is called operational semantics.

50

CCS

Semantics
Up until now, our semantics were given informally in terms of pictures. Now we will
formalise our semantic intuitions.
Our set of locations in our labelled transition system will be the set of all CCS
processes. Locations can now be labelled with what process they are:

50¢.(coke + pepsi)

coke + pepsi

STOP STOP

50¢

coke pepsi

We will now define what transitions exist in our LTS by means of a set of inference
rules. This technique is called operational semantics.

51

CCS

Inference Rules

In logic we often write:
A1 A2 · · · An

C

To indicate that C can be proved by proving all assumptions A1 through An.
For example, the classical logical rule of modus ponens is written as follows:

A⇒ B A

B
Modus Ponens

52

CCS

Operational Semantics

a.P
a−→ P

Act
P

a−→ P ′

P + Q
a−→ P ′Choice1

Q
a−→ Q ′

P + Q
a−→ Q ′Choice2

P
a−→ P ′

P | Q a−→ P ′ | Q
Par1

Q
a−→ Q ′

P | Q a−→ P | Q ′Par2
P

a−→ P ′ Q
a−→ Q ′

P | Q τ−→ P ′ | Q ′ Sync

P
a−→ P ′ a /∈ {b, b}
P \ b a−→ P ′ \ b

Restrict

Bisimulation Equivalence

Two processes (or locations) P and Q are bisimilar iff they can do the same actions
and those actions themselves lead to bisimilar processes. All of our previous equalities
can be proven by induction on the semantics here.

53

CCS

Operational Semantics

a.P
a−→ P

Act
P

a−→ P ′

P + Q
a−→ P ′Choice1

Q
a−→ Q ′

P + Q
a−→ Q ′Choice2

P
a−→ P ′

P | Q a−→ P ′ | Q
Par1

Q
a−→ Q ′

P | Q a−→ P | Q ′Par2
P

a−→ P ′ Q
a−→ Q ′

P | Q τ−→ P ′ | Q ′ Sync

P
a−→ P ′ a /∈ {b, b}
P \ b a−→ P ′ \ b

Restrict

Bisimulation Equivalence

Two processes (or locations) P and Q are bisimilar iff they can do the same actions
and those actions themselves lead to bisimilar processes. All of our previous equalities
can be proven by induction on the semantics here.

54

CCS

Operational Semantics

a.P
a−→ P

Act
P

a−→ P ′

P + Q
a−→ P ′Choice1

Q
a−→ Q ′

P + Q
a−→ Q ′Choice2

P
a−→ P ′

P | Q a−→ P ′ | Q
Par1

Q
a−→ Q ′

P | Q a−→ P | Q ′Par2
P

a−→ P ′ Q
a−→ Q ′

P | Q τ−→ P ′ | Q ′ Sync

P
a−→ P ′ a /∈ {b, b}
P \ b a−→ P ′ \ b

Restrict

Bisimulation Equivalence

Two processes (or locations) P and Q are bisimilar iff they can do the same actions
and those actions themselves lead to bisimilar processes. All of our previous equalities
can be proven by induction on the semantics here.

55

CCS

Proof Trees
The advantages of this rule presentation is that they can be “stacked” to give a neat
tree like derivation of proofs.

Exercise: Show ((a.P) + Q) | a.R τ−→ P | R
56

CCS

Value Passing
We add synchronous channels into CCS by letting actions take parameters.

Actions: a(3) c(15) x(True) . . .

Coactions: a(x) c(y) c(z) . . .

The parameter of an action is the value to be sent, and the parameter of a coaction is
the variable in which the received value is stored.

Example (Buffers)

A one-cell sized buffer is implemented as:

BUFF = in(x).out(x).BUFF

Larger buffers can be made by stitching multiple BUFF processes together! This is
one (overkill) way to model asynchronous communication in CCS.

57

CCS

Value Passing
We add synchronous channels into CCS by letting actions take parameters.

Actions: a(3) c(15) x(True) . . .

Coactions: a(x) c(y) c(z) . . .

The parameter of an action is the value to be sent, and the parameter of a coaction is
the variable in which the received value is stored.

Example (Buffers)

A one-cell sized buffer is implemented as:

BUFF = in(x).out(x).BUFF

Larger buffers can be made by stitching multiple BUFF processes together! This is
one (overkill) way to model asynchronous communication in CCS.

58

CCS

Value Passing
We add synchronous channels into CCS by letting actions take parameters.

Actions: a(3) c(15) x(True) . . .

Coactions: a(x) c(y) c(z) . . .

The parameter of an action is the value to be sent, and the parameter of a coaction is
the variable in which the received value is stored.

Example (Buffers)

A one-cell sized buffer is implemented as:

BUFF = in(x).out(x).BUFF

Larger buffers can be made by stitching multiple BUFF processes together! This is
one (overkill) way to model asynchronous communication in CCS.

59

CCS

Guards

Rather than add if statements, we add the notion of a guard:

Definition

If P is a value-passing CCS process and ϕ is a formula about the variables in scope,
then [ϕ]P is a process that executes just like P if ϕ holds for the current state, and
like STOP otherwise.

We can define an if statement like so:

if ϕ then P else Q ≡ ([ϕ].P) + ([¬ϕ].Q)

60

CCS

Guards

Rather than add if statements, we add the notion of a guard:

Definition

If P is a value-passing CCS process and ϕ is a formula about the variables in scope,
then [ϕ]P is a process that executes just like P if ϕ holds for the current state, and
like STOP otherwise.

We can define an if statement like so:

if ϕ then P else Q ≡ ([ϕ].P) + ([¬ϕ].Q)

61

CCS

Guards

Rather than add if statements, we add the notion of a guard:

Definition

If P is a value-passing CCS process and ϕ is a formula about the variables in scope,
then [ϕ]P is a process that executes just like P if ϕ holds for the current state, and
like STOP otherwise.

We can define an if statement like so:

if ϕ then P else Q ≡ ([ϕ].P) + ([¬ϕ].Q)

62

CCS

Assignment

Most process algebras have no notion of state. Some presentations of value passing
CCS also include assignment to update variables in the state:

Definition

If P is a process and x is a variable in the state, and e is an expression, then Jx := eKP
is the same as P except that it first updates the variable x to have the value e before
making the transition.

With this, our value-passing CCS is now just as expressive as Ben-Ari’s pseudocode.
Moreover, the connection between CCS and transition diagrams is formalised, enabling
us to reason symbolically about processes rather than semantically.

63

CCS

Assignment

Most process algebras have no notion of state. Some presentations of value passing
CCS also include assignment to update variables in the state:

Definition

If P is a process and x is a variable in the state, and e is an expression, then Jx := eKP
is the same as P except that it first updates the variable x to have the value e before
making the transition.

With this, our value-passing CCS is now just as expressive as Ben-Ari’s pseudocode.
Moreover, the connection between CCS and transition diagrams is formalised, enabling
us to reason symbolically about processes rather than semantically.

64

CCS

Assignment

Most process algebras have no notion of state. Some presentations of value passing
CCS also include assignment to update variables in the state:

Definition

If P is a process and x is a variable in the state, and e is an expression, then Jx := eKP
is the same as P except that it first updates the variable x to have the value e before
making the transition.

With this, our value-passing CCS is now just as expressive as Ben-Ari’s pseudocode.
Moreover, the connection between CCS and transition diagrams is formalised, enabling
us to reason symbolically about processes rather than semantically.

65

CCS

Process Algebra

This was an example of a process algebra. There are many such algebras and they
have been very influential on the design of concurrent programming languages.

Other process algebras include:

The Algebra of Communicating Processes (Bergstra and Klop, 1982) which
distinguishes between deadlock and termination.

The Communicating Sequential Processes formalism (Hoare, 1978) with a more
refined treatment of nondeterminism.

The π-calculus (Milner et al. 1992), a derivative of CCS that allows for first class
channels and processes.

There are dozens of equivalences other than strong bisimulation that are useful for
various scenarios.

66

CCS

Process Algebra

This was an example of a process algebra. There are many such algebras and they
have been very influential on the design of concurrent programming languages.
Other process algebras include:

The Algebra of Communicating Processes (Bergstra and Klop, 1982) which
distinguishes between deadlock and termination.

The Communicating Sequential Processes formalism (Hoare, 1978) with a more
refined treatment of nondeterminism.

The π-calculus (Milner et al. 1992), a derivative of CCS that allows for first class
channels and processes.

There are dozens of equivalences other than strong bisimulation that are useful for
various scenarios.

67

CCS

Process Algebra

This was an example of a process algebra. There are many such algebras and they
have been very influential on the design of concurrent programming languages.
Other process algebras include:

The Algebra of Communicating Processes (Bergstra and Klop, 1982) which
distinguishes between deadlock and termination.

The Communicating Sequential Processes formalism (Hoare, 1978) with a more
refined treatment of nondeterminism.

The π-calculus (Milner et al. 1992), a derivative of CCS that allows for first class
channels and processes.

There are dozens of equivalences other than strong bisimulation that are useful for
various scenarios.

68

CCS

What Now?

Next, we’ll discuss distributed algorithms and commitment and consensus topics.

69

	CCS
	

