Simultaneous Induction

ヘロン 人間 とくほ とくほ と

Э

Ambiguity and Simultaneous Definitions

Liam O'Connor

CSE, UNSW (and data61)

Semester 2 2018

Simultaneous Induction

Arithmetic

Infer $1 + 2 \times 3$ **Arith** (both ways) to whiteboard

●●● Ⅲ → ■● → Ⅲ → ■● → ●●●

Simultaneous Induction

・ロト ・ 日 ・ モ ト ・ モ ・ うへの

Arithmetic

Infer $1 + 2 \times 3$ **Arith** (both ways) to whiteboard

・ロト ・回ト ・ヨト ・ヨト … ヨ

Ambiguity

Arith is *ambiguous*, which means that there are multiple ways to derive the same judgement.

For syntax, this is a big problem, as different interpretations of syntax can lead to semantic inconsistency:

1 -	+ 2 × 3 Ar	ith	1 -	+ 2 × 3 Ar	ith
1 Arith	2×3 Arith		1+2	3 Arith	
$1\in\mathbb{Z}$	2 Arith	3 Arith	1 Arith	2 Arith	$3\in\mathbb{Z}$
	$2\in\mathbb{Z}$	$3\in\mathbb{Z}$	$1\in\mathbb{Z}$	$2\in\mathbb{Z}$	

Second Attempt

We want to specify **Arith** in such a way that enforces order of operations.

Here we will use multiple judgements:

Atom PExp SExp	::= i (S ::= Aton ::= PExp	SExp) (<i>i</i> ∈ n PExp × o SExp +	∈ ℤ) PExp SExp

Second Attempt

We want to specify **Arith** in such a way that enforces order of operations.

Here we will use multiple judgements:

Example (Arithmetic	Expression	ı)		
Atom PExp SExp	::= i (S ::= Atom ::= PExp	Exp) (<i>i</i> ∈ PExp × SExp + 9	∷ℤ) РЕхр SExp	
$i\in\mathbb{Z}$	a SExp	e Atom	e PExp	
<i>i</i> Atom	(a) Atom	e PExp	e SExp	
a PExp	b PExp	a SExp	b SExp	
a imes b	PExp	a+ b \$	SExp	

Consider: Is there still any ambiguity here?

Simultaneous Induction

More ambiguity

	$2\in\mathbb{Z}$	$3\in\mathbb{Z}$	$1\in\mathbb{Z}$	$2\in\mathbb{Z}$		
$1\in\mathbb{Z}$	2 Atom	3 Atom	1 Atom	2 Atom	$3\in\mathbb{Z}$	
1 Atom	2 PExp	3 PExp	1 PExp	2 PExp	3 Atom	
1 PExp	2 × 3 PExp		$1 \times 2 \ \mathbf{PExp}$		3 PExp	
$1 \times 2 \times 3$ PExp			1	× 2 × 3 PE	хр	

This ambiguity seems harmless, but it would not be harmless for some other operations. Which ones? Operators that are not associative.

We have to specify the *associativity* of operators. How?

Simultaneous Induction

More ambiguity

	$2\in\mathbb{Z}$	$3\in\mathbb{Z}$	$1\in\mathbb{Z}$	$2\in\mathbb{Z}$	
$1\in\mathbb{Z}$	2 Atom	3 Atom	1 Atom	2 Atom	$3\in\mathbb{Z}$
1 Atom	2 PExp	3 PExp	1 PExp	2 PExp	3 Atom
1 PExp	2 × 3	PExp	1 × 2	PExp	3 PExp
$1 \times 2 \times 3$ PExp			1	× 2 × 3 PE	хр

This ambiguity seems harmless, but it would not be harmless for some other operations. Which ones? Operators that are not *associative*.

We have to specify the *associativity* of operators. How?

Simultaneous Induction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Associativities

Operators have various *associativity* constraints:

AssociativeAll associativities are equal.Left-Associative $A \odot B \odot C = (A \odot B) \odot C$ Right-Associative $A \odot B \odot C = A \odot (B \odot C)$

Try to think of some examples!

Enforcing associativity

We force the grammar to accept a smaller set of expressions on one side of the operator only. Show how this works on the whiteboard.

PExp SExp	::= 7 (S ::= Atom ::= PExp	h Atom × PExp +	- ℤ) PExp SExp	

Enforcing associativity

We force the grammar to accept a smaller set of expressions on one side of the operator only. Show how this works on the whiteboard.

Example (Arithmetic	c Expression	ı)				
Atom::= $i \mid (SExp) (i \in \mathbb{Z})$ PExp::=Atom \mid Atom \times PExpSExp::=PExp \mid PExp + SExp						
$i\in\mathbb{Z}$	a SExp	e Atom	e PExp			
i Atom	(a) Atom	e PExp	e SExp			
a Atom	b PExp	a PExp	b SExp			
$a \times b$	PExp	a+b	SExp			

Here we made multiplication and addition right associative. How would we do left?

Simultaneous Induction

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Bring Back Parentheses

Is this language ambiguous? to whiteboard

Simultaneous Induction

Ambiguity in Parentheses

Not only is it ambiguous, it is infinitely so. Strings like ()()() could be split at two different locations by rule M_J , but if we use ε , then even the string () is ambiguous:

We will eliminate the ambiguity by once again splitting ${\bf M}$ into two judgements, ${\bf N}$ and ${\bf L}.$

The crucial observation is that terms in M are a list (L) of terms nested within parentheses (N).

Proving Equivalence

Now we shall prove $\mathbf{M} = \mathbf{L}$. There are two cases, each dispatched with rule induction:

 $\frac{s \mathbf{M}}{s \mathbf{L}} = \frac{s \mathbf{L}}{s \mathbf{M}}$

The first case requires proving a *lemma*. The second requires *simultaneous induction*.

These proofs will be carried out on the "board" (iPad). A properly typeset PDF of the proof will also be uploaded.