
Preliminaries

Gabriele Keller

August 3, 2015

1 Introduction

As we are going to discuss and reason about properties of various programming languages and
language features, we need a formal meta-language which allows us to make statements about
these properties. We need to specify the grammar of a language, the static semantics (often in
form of typing and scoping rules) and dynamic semantics. Fortunately, it turns out that a single
formalism, inductive definitions built on inference rules, is sufficient.

2 Judgements and Inference Rules

A judgement is simply a statement that a certain property holds for a specific object,1 or alter-
natively

• 3 + 4 ∗ 5 is a valid arithmetic expression

• the string ”aba” is a palindrome

• 0.43423 is a floating point value

Judgements are not unlike predicates you might know from Predicate Logic. We write

a S

for a judgement of the form The property S holds for object a. In predicate logic, this is usually
written differently, as S(a). However, we will see later that for our purpose, it is much more
convenient to write it in the above given post-fix notation. Alternatively, we can interpret S as a
set of objects with a certain property, and read the judgement aS as: a is an element of the set
S. Some examples of judgements and how to read them are:

- 5 even

– 5 is even, or

– 5 is an element of the set of even numbers

- 3 + 4 ∗ 5 expr

– 3 + 4 ∗ 5 is a syntactically correct expression, or

– 3 + 4 ∗ 5 an element of the set containing all syntactically correct expressions

- 0.43423 float

– 0.43423 is a floating point value

– 0.43423 is an element of the set of floating points values

1More generally, a relationship between a number of objects holds. For now, we just look at statements about
a single object.

1

Judgements by themselves would be boring and fairly useless. Most interesting sets have an infinite
number of elements, and to define such a set it would obviously be impossible to explicitly list them
all using simple judgements. Luckily, the sets we are interested in are also no random collections
of objects, but the sets and properties can be systematically defined by so-called inference rules.

Inference rules allow us to combine judgements to obtain new judgements and have the following
general form:

If judgements J1, and J2, and . . . and Jn are inferable, then the judgement J is inferable

and are usually given in the following standard form:

J1 J2 . . . Jn
J

where the judgements J1 to Jn are called premises, and J is called a conclusion. An inference
rule does not have to have premises, it can consist of a single conclusion. Such inference rules are
called axioms. But let us have a look at a concrete example now.

We start by defining some simple properties over the set of natural numbers (Nat). For
simplicity reasons, we represent them as 0, (s 0), (s ((s 0))), (s(s(s 0))) for 0, 1, 2, 3, and so on (s
here stands for successor). So, first of all, how can we define Nat itself using inference rules?
Listing all the element of Nat would be equivalent to including an axiom for each number:

0 Nat

(s 0) Nat

(s (s 0)) Nat

...

Apart from the first rule, all the rules have the form

(s x) Nat

where x Nat has been established by the previously listed axiom. In words, we have

1. 0 is in Nat, and

2. for all x, if x is in Nat, then (s x) in Nat

which can be translated directly into the following two inference rules:

0 Nat

x Nat

(s x) Nat

where x can be instantiated to any In the same way, we can define the sets Even and Odd :

0 Even

x Even

(s(s x)) Even

(s 0) Odd

x Odd

(s(s x)) Odd

Rules do work in two ways: we can use them to define a property, but we can also use them
to show that a judgement is valid. How does it work with inference rules? Assume we want to
show that some judgement J is valid. We have to look for a rule which has J as a conclusion. If

2

this rule is an axiom, we are already done. If not, we have to show that all of its premises are
valid by recursively applying the same strategy to all of them. For example, we can show that
s(s(0)) Even, since

0 Even

(s(s 0)) Even

and

0 Even

As the last rule is an axiom, there are no premises left to prove, and we are done.
Similarly, we can show that 0 + 1 + 1 + 1 + 1 Even. An alternative and often quite convenient

way to write inference proofs is to stack the rules we apply together and draw a “proof tree” —
in our example, more a proof stack, since each rule has just a single premise.

(s 0) Odd

(s(s 0)) Odd

(s(s(s 0))) Odd

(s(s(s(s(s 0))))) Odd

Note that inference works on a purely syntactic basis. Given the rules above, we are not able
to prove 2 Even, even though we can show that s(s(0)) Even, and we know that s(s(0)) is equal
to 2, we cannot apply that knowledge, since we have no rule which tells us it is ok to do so. We
just mechanically manipulate terms according to the given rules.

Let us look at a slightly more interesting example: we want to define the language M which
contains all expressions of properly matched parenthesis (and no other characters):2

M = {ε, (), ()(), ()()(), . . . , (()), ((())), . . . , ()(()), ()()(()), . . .}

Again, let us start by describing the rules in (semi-)natural language. There are basically two
ways to “legally” combine parenthesis: we can either nest them, or concatenate them:

1. The empty string (denoted by ε) is in M

2. If s1 and s2 are in M , then s1s2 is in M

3. If s is in M , then (s) is in M

Again, these rules can be directly translated into inference rules:

(1)
ε M

(2)
s1 M s2 M

s1s2 M

(3)
s M

(s) M

How can we show that ()(()) is in M ? As we did previously, we check if there is a rule whose
conclusion matches the judgement we want to infer. If we apply Rule (2), we have to show that
both () and (()) are in M . Since () = (ε), we can apply Rule (3), and only have to show that ε is
in M (Rule (1)). By applying Rule (3) in the same way, we can show that (()) is in M as well,
and we are done:

The problem is, however, not as straight forward as it seems, because instead of applying
Rule (2), we could as well apply Rule (3). It has only a single premise, so we only have to prove

2ε represents the empty string

3

that)(() is in M . The only rule that’s applicable now is Rule (2), and we could apply it in several
different ways resulting in different premises:

) M (() M

)(() M

or
)(M () M

)(() M
or

)((M) M

)(() M

In the first application, we end up with the premise:) is in M , but there is no rule which we
can apply to get rid of it. This is not that surprising, since M should only contain expressions of
properly matched parenthesis, and), as well as)(() are not properly matched. So, by choosing
the wrong rule, or applying the right rule in a wrong way – for example, splitting ()() up into
()(and) – it is easily possible to end up with premises which are not actually valid and reach a
dead end. In our example, this was not hard to see. It can be extremely difficult to decide which
rule to apply and how, without some background knowledge about the objects and properties, as
there might be an infinite number of possibilities. This is one reason why it is not possible to write
a program which automatically infers judgements, and which guarantees to find such a derivation
if it exists. It is, however, possible to write semi-automatic theorem provers, which come up with
proofs in cases where it is fairly standard, and rely on user input otherwise.

2.1 Derivable and Admissible Rules

What would happen if we added the following rule:

(4)
s M

((s)) M

Does this change the set M in any way, that is, is there a string s for which we can infer s M if
we use 4, but not otherwise? This doesn’t seem very likely: the rule just says that, if a string s is
in M it is ok to add two pairs of matching parenthesis. Since we already had a rule which allows
us to add one pair of parenthesis, we can apply this rules twice and achieve the same effect:

s M

(s) M
((s)) M

This means that Rule (4) is derivable from the existing rules.
In all the previous rules, the strings in the premises were simpler than the string in the con-

clusion. The following rule if different in this respect:

(5)
()s M

s M

Interestingly, although Rule (4) does not introduce any new strings to M , the rule is also not
derivable from any of the existing rules. Such a rule is called admissible.

2.2 Inductive Definitions

A set of inference rules R defining a set A is called an inductive definition of A, if s A holds if and
only if s A is derivable using R. All the examples we discussed are inductive definitions.

Not all sets can be defined using inductive definitions. For example, while natural numbers
are one of the standard examples for such sets, floating point numbers cannot be defined in such
a way.

4

2.3 Judgements and Relations

So far, we defined a judgement to be a statement about a property of an object. We can generalise
this definition to relation between a number of objects. Consider the following inductive definition
of the relation “a < b” on natural numbers. For convenience reasons, we choose an infix notation
here:

n Nat

0 < (s n)

n < m

(s n) < (s m)

As before, we can also view this as an inductive definition of a set. In this case, a set of pairs,
where (a, b) in < if and only if a is less than b.

3 Rule Induction

Natural deduction by itself is sometimes not powerful enough. For example, although we can see
that the Rule (5) in Section 2.1 is valid for every string s in M , we cannot show this by simply
combining the existing rules. We will therefore introduce another proof technique here, called
induction. You will probably know induction over natural numbers and structural induction from
mathematics and previous courses. Both are special cases of a more general induction principle
called rule induction.

Let us go back to our previous example set M of properly matched parenthesis. The rules 1
to 3 provide an inductive definition of M :

(1)
ε M

(2)
s1 M s2 M

s1s2 M

(3)
s M

(s) M

Now, let us assume we want to prove some property P of the strings in M , that is: show that if
s M then s P . Since we know that there is a derivation for each s M , we only need to show that:

• ε P

• if s1 P and s2 P , then s1s2 P

• if s P , then (s) P

Which in essence correspond to the original rules only with M replaced by P . For example, if we
want to show that all s in M have the same number of opening and closing brackets, we need to
prove the following statements (where open denotes the number of opening, close those of closing
brackets):

1. open(ε) = close (ε)

Proof: open(ε) = 0 = close (ε)

2. if open(s1) = close (s1) and open(s2) = close (s2) then open(s1 s2) = close (s1 s2)

For the proof, we assume that the statements corresponding to the judgements in the
premises of the rules hold. These assumptions are called the induction hypothesis.

5

• Induction Hypothesis 1: open(s1) = close (s1)

• Induction Hypothesis 2: open(s2) = close (s2)

Proof: open(s1 s2) = open(s1) + open (s2) = close(s1) + close (s2) = close (s1 + s2)

3. if open(s) = close (s) then open((s))

• Induction Hypothesis 1: open(s) = close (s)

Proof:

open((s))

= {property of open}
open(() + open(s) + open())

= {property of open}
1 + open(s) + 0

= {Induction Hypothesis,Arithmetic}
1 + close(s) + 0

= {property of close}
close(() + close(s) + close())

= {property of close}
close((s))

In the proof, we used the rules of arithmetic, and that properties of close and open, such as
open(() = close ()) = 1, and open()) = close(() = 0. In a fully formal proof, we would also
need a formal definition of these two functions.

3.1 Ambiguity

The definition of M , although correct, has a undesirable property: for any string in M , we do not
have just one derivation, but an infinite number of possible derivations, since any string s can be
split into ε and s by applying Rule (2), and then Rule (1) to get rid of ε. However, this derivation
step is completely unnecessary.

Fortunately, if we take a more structured view on the elements of this language, we can come
up with an alternative set of rules, where we have exactly one derivation for each string in the set.
We can interpret each string as a possibly empty list (L) of non-empty parenthesis expressions
(N) according to the following inference rules:

(1)
ε L

(2)
s1 N s2 L

ε L

(2)
s L

(s) N

The interesting point here is that L and N are defined in terms of each other: we have a mutually
recursive definition.

Let us look at one more example of an ambiguous definition: simple arithmetic expressions,
given here both in EBNF form and as inductive definition using inference rules:

The EBNF

Expr → int | (Expr) | Expr + Expr | Expr * Expr

6

describes the same language as the following set of inference rules (int represents an integer
constant):

e Expr

(e) Expr

e1 Expr e2 Expr

e1 + e2 Expr

e1 Expr e2 Expr

e1 * e2 Expr

Although in this case, there are not an infinite number of possible derivations for each expression,
every expression which contains more than a single arithmetic operation still can be derived in
more than one way:

1 Expr 2 Expr

1 + 2 Expr 3 Expr

1 + 2 ∗ 3 Expr

1 Expr

2 Expr 3 Expr

2 ∗ 3 Expr

1 + 2 ∗ 3 Expr

Although both derivations are correct with respect to the rules given, the second derivation
is more appropriate for an arithmetic expression, as it decomposes the expression first into two
summands. We give an alternative definition, which takes precedence and associativity of the
operators into account:

e1 SExpr e2 PExpr

e1 + e2 SExpr

e PExpr

e SExpr

e1 PExpr e2 FExpr

e1 * e2 PExpr

e FExpr

e PExpr

e SExpr

(e) FExpr int FExpr

The unambiguous grammar is, again, much more complicated than the original grammar, even for
such a simple language. This is not surprising, as it contains additional structural information.
For programming languages, ambiguous grammars are problematic, as they may allow different
interpretations of programs, and are therefore usually avoided.

3.2 Simultaneous Induction

How can we apply the principle of rule induction to mutually recursive definitions like those of
L and SExpr? In most cases, we have to generalise the proof goal. For example, if we want to
prove a property P for all e in SExpr, that is e SExpr implies e PExpr . By the principle of rule
induction we have to show that

• under the assumption that

- e = e1 + e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

7

show that e1 + e2 P

• under the assumption that

- e PExpr

show that e P

The problem is that, since we only try to show something about SExpr , the induction hypoth-
esis does not say anything about e2 (we only know that e2 PExpr , and nothing at all about e in
for the second rule. In most cases, this is not enough to prove anything. The solution is often
to try and prove a more general statement instead which leads to stronger induction hypothesis.
If we try to show, for instance, that e SExpr or e PExpr or e FExpr implies e P , we have more
cases to cover on one hand (one for each inference rule which has PExpr, SExpr or FExpr in the
conclusion), on the other hand the induction hypothesis cover all the premises in the rules:

• under the assumption that

- e = e1 + e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

- e2 P

show that e1 + e2 P

• under the assumption that

- e PExpr

and the Induction Hypothesis

- e P

show that e P (trivial)

• under the assumption that

- e = e1 ∗ e2

- e1 SExpr

- e2 PExpr

and the Induction Hypothesis

- e1 P

- e2 P

show that e1 ∗ e2 P

• . . .

8

4 Examples

4.1 Boolean Expressions

As another example, consider boolean expressions. For simplicity, we only include three operators
for now: ∧, ∨, and ¬, the constants True and False, and parentheses. Our first attempt at defining
a set of inference rules to characterise boolean expressions might look as follows:

True BExpr False BExpr

e BExpr

¬e BExpr

e BExpr

(e) BExpr

e1 BExpr e2 BExpr

e1 ∧ e2 BExpr

e1 BExpr e2 BExpr

e1 ∨ e2 BExpr

Unfortunately, with this set of rules, we have the same problem we had with our rules for
arithmetic expressions. Even though they inductively define the set of boolean expressions, they
are ambiguous and do not reflect associativity and precedence of the operators. So, we need
to come up with an alternative definition. The operator ¬ has the highest precedence, ∨ the
lowest, and both ∧ and ∨ are left associative. The solution is also similar to the solution for
arithmetic expressions. First, we need rules to define the subset of boolean expressions which can
be arguments of the operator with the highest precedence, negation. These can only be atomic
expressions (constants), any expression in parentheses, or such an expression preceded by negation.
Let’s call this subset NbExpr. We call the boolean expressions we generate with the new rules
Bexpr.

True Nbexpr False Nbexpr

e Bexpr

¬(e) Nbexpr

The rules for the operators ∧ and ∨ correspond to those for addition and multiplication. Since the
operators are left associative, the expression on the left hand side can only be an expression with
stronger cohesion than the one on the right hand side. For the ∧ operator, it has to be a Nbexpr.

e1 NbExpr e2 Abexpr

e1 ∧ e2 Abexpr

e1 Abexpr e2 Bexpr

e1 ∨ e2 Bexpr

And finally we need rules to express the fact the Nbexpr ⊆ Abexpr ⊆ Bexpr

e Nbexpr

e Abexpr

e Abexpr

e Bexpr

4.2 More Arithmetic

We can define addition on natural numbers inductively as relation between three numbers n,m,
and k, where n+m = k.

(Add− 1)
n Nat

0 + n = n

(Add− 2)
n+m = k

(s m) + n = (s k)

9

The rule

n Nat

n+ 0 = n

is not derivable from Add − 1 and Add − 2, but it is admissible. You can show that this is the
case using induction over natural numbers. Similarly, for the following rule:

n+m = k

m+ n = k

5 Exercises

1. Define a set of booleand expressions TBExpr which only contains boolean expressions which
would evaluate to True.

2. Using induction over natural numbers, show that the two admissible rules of the arithmetic
expression example are indeed admissible.

3. Define a Haskell data type which models boolean expressions.

Acknowledgements These lecture draw on material from the draft book on Programming Lan-
guages: Theory and Practice, Robert Harper, and contain examples taken from Frank Pfenning’s
lecture notes for the CMU course Foundations of Programming Languages.

10

