COMP3161/COMP9I161
Datatypes and Type Safety Exercises

Liam O’Connor-Dayvis

September 14, 2018

1. Safety and Liveness Properties

(a) [x] For each of the following properties, identify if it is a safety or a liveness property.
i. When I come home, there must be beer in the fridge.
ii. When I come home, I’ll drop onto the couch and drink a beer.
iii. I’'ll be home later.
iv. When process p has executed line 5, then process ¢ must execute line 17 again.
v. When process p has executed line 5, then process ¢ cannot execute line 17 again.
vi. Process ¢ cannot execute line 17 again unless process p has executed line 5.
vii. Process p has to execute line 5 before ¢ can execute line 17 again.
(b) [#xx%] By considering a property as a set of behaviours (infinite sequences of states),

show that if the state space ¥ has at least two states, then any property can be expressed
as the intersection of two liveness properties.

Hint: It may be helpful to know that the union of a liveness property and any other prop-
erty is also a liveness property (this result follows from the fact that liveness properties
are dense sets).

2. Type Safety: Consider this very simple language with function application and two built-in
functions:

= (App €1 €2)
| S
| K
The dynamic semantics evaluate the left hand side of applications as much as possible:

e1— e}
e1 ez €] ey

The K function takes two arguments and returns the first one.

(App (App K 7) y) =

The S function takes three arguments, applies the first argument to the third, and applies the
result of that to the second argument applied to the third. More clearly:

(App (App (App S z) y) 2) — (App (App = z) (App ¥ 2))
(a) [x*] Define a set of typing rules for this language, where the set of types is described by:

T U= T — T2
| ¢

Note that — is right-associative, so 71 — 7o — 73 means 71 — (72 — 73).



(b) [#xx] In order to prove that your typing rules are type-safe, we must prove progress and
preservation. For progress, we will define the set of final states as all states that have no
successor:

F={s|Ps s 5}

This trivially satisfies progress, as progress states that all well-typed states either have a
successor state or are final states.

Preservation, however, requires a nontrivial proof. Prove preservation for your typing
rules with respect to the dynamic semantics of this language.

. Haskell Types: Determine a MinHS type that is isomorphic to the following Haskell type
declarations:

(a) [x] data MaybeInt = Just Int | Nothing
(b) [*] data Nat = Zero | Suc Nat

(¢c) [%] data IntTree = Tree Int IntTree IntTree | Leaf Int

. Inhabitation: Do the following MinHS types contain any (finite) values? If not, explain why.
If so, give an example value.

(a) [¥] rect.Int +1¢

(b) [*] rect.Int xt

(¢) [¥] (rect.Int xt)+ Bool

. Encodings: For each of the following sets, give a MinHS type that corresponds to it. Justify
why your MinHS type is equivalent to the set, for example by providing a bijective function
that, given a element of that set, gives the corresponding MinHS value of the corresponding
type.

(a) [x] The natural number set N.

[
(b) [#x] The set of integers Z.
(c) [#%] The set of rational numbers Q.
(d) [#*%] The set of (computable) real numbers Ryy. It may be useful to assume a lazy

semantics.
. Curry-Howard: Give a term in typed A-calculus that is a proof of the following propositions.
If there is no such term, explain why.

(a) [x] A= AVB

(b) [x] ANB=A

(c) [#x] PVP& P
Hint: Recall that A & B is shorthand for A= BA B = A.

(d) *] (ANB=C)e (A= B=0C)
(e) ] PV(QAR)= (PVQ)A(PVR)

(f) (x| P = =(=P)
Hint: Recall that —A is shorthand for A = 1.

(&) [oer] =(=P) = P
(h) poo] =(=(=P)) = =P
(i) [px*] (PV—-P)= —(-P)=P

Page 2



