COMP3161/COMP9161

Datatypes and Type Safety Exercises

Liam O'Connor-Davis

September 14, 2018

1. Safety and Liveness Properties

- (a) [★] For each of the following properties, identify if it is a safety or a liveness property.
 - i. When I come home, there must be beer in the fridge.
 - ii. When I come home, I'll drop onto the couch and drink a beer.
 - iii. I'll be home later.
 - iv. When process p has executed line 5, then process q must execute line 17 again.
 - v. When process p has executed line 5, then process q cannot execute line 17 again.
 - vi. Process q cannot execute line 17 again unless process p has executed line 5.
 - vii. Process p has to execute line 5 before q can execute line 17 again.
- (b) $[\star\star\star\star]$ By considering a property as a set of behaviours (infinite sequences of states), show that if the state space Σ has at least two states, then any property can be expressed as the intersection of two liveness properties.

Hint: It may be helpful to know that the union of a liveness property and any other property is also a liveness property (this result follows from the fact that liveness properties are dense sets).

2. **Type Safety**: Consider this very simple language with function application and two built-in functions:

The dynamic semantics evaluate the left hand side of applications as much as possible:

$$\frac{e_1 \mapsto e_1'}{e_1 \ e_2 \mapsto e_1' \ e_2}$$

The K function takes two arguments and returns the first one.

$$\overline{(\texttt{App }(\texttt{App }\mathsf{K}\ x)\ y) \mapsto x}$$

The S function takes three arguments, applies the first argument to the third, and applies the result of that to the second argument applied to the third. More clearly:

$$\overline{(\texttt{App }(\texttt{App }(\texttt{App }\texttt{S}\ x)\ y)\ z) \mapsto (\texttt{App }(\texttt{App }x\ z)\ (\texttt{App }y\ z))}$$

(a) [**] Define a set of typing rules for this language, where the set of types is described by:

$$\tau ::= \tau_1 \to \tau_2$$

$$\mid \quad \iota$$

Note that \rightarrow is right-associative, so $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3$ means $\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$.

1

(b) [***] In order to prove that your typing rules are type-safe, we must prove *progress* and *preservation*. For progress, we will define the set of final states as all states that have no successor:

$$F = \{s \mid \nexists s'. \ s \mapsto s'\}$$

This trivially satisfies progress, as progress states that all well-typed states either have a successor state or are final states.

Preservation, however, requires a nontrivial proof. Prove preservation for your typing rules with respect to the dynamic semantics of this language.

- 3. **Haskell Types**: Determine a MinHS type that is isomorphic to the following Haskell type declarations:
 - (a) [★] data MaybeInt = Just Int | Nothing
 - (b) $[\star]$ data Nat = Zero | Suc Nat
 - (c) $[\star]$ data IntTree = Tree Int IntTree IntTree | Leaf Int
- 4. **Inhabitation**: Do the following MinHS types contain any (finite) values? If not, explain why. If so, give an example value.
 - (a) $[\star]$ rec t. Int +t
 - (b) $[\star]$ rec t. Int $\times t$
 - (c) $[\star]$ (rec t. Int $\times t$) + Bool
- 5. **Encodings**: For each of the following sets, give a MinHS type that corresponds to it. Justify why your MinHS type is equivalent to the set, for example by providing a bijective function that, given a element of that set, gives the corresponding MinHS value of the corresponding type.
 - (a) $[\star]$ The natural number set \mathbb{N} .
 - (b) $[\star\star]$ The set of integers \mathbb{Z} .
 - (c) $[\star\star]$ The set of rational numbers \mathbb{Q} .
 - (d) $[\star\star\star]$ The set of (computable) real numbers \mathbb{R}_{TM} . It may be useful to assume a lazy semantics.
- 6. **Curry-Howard**: Give a term in typed λ -calculus that is a proof of the following propositions. If there is no such term, explain why.
 - (a) $[\star]$ $A \Rightarrow A \lor B$
 - (b) $[\star]$ $A \wedge B \Rightarrow A$
 - (c) $[\star\star]$ $P \lor P \Leftrightarrow P$

Hint: Recall that $A \Leftrightarrow B$ is shorthand for $A \Rightarrow B \land B \Rightarrow A$.

- (d) $[\star\star]$ $(A \land B \Rightarrow C) \Leftrightarrow (A \Rightarrow B \Rightarrow C)$
- (e) $[\star\star]$ $P \lor (Q \land R) \Rightarrow (P \lor Q) \land (P \lor R)$
- (f) $[\star\star]$ $P \Rightarrow \neg(\neg P)$

Hint: Recall that $\neg A$ is shorthand for $A \Rightarrow \bot$.

- (g) $[\star\star\star] \neg (\neg P) \Rightarrow P$
- (h) $[\star\star\star] \neg (\neg(\neg P)) \Rightarrow \neg P$
- (i) $[\star\star\star]$ $(P \lor \neg P) \Rightarrow \neg(\neg P) \Rightarrow P$