
COMP3161/COMP9161

Datatypes and Type Safety Exercises

Liam O’Connor-Davis

September 14, 2018

1. Safety and Liveness Properties

(a) [?] For each of the following properties, identify if it is a safety or a liveness property.

i. When I come home, there must be beer in the fridge.

ii. When I come home, I’ll drop onto the couch and drink a beer.

iii. I’ll be home later.

iv. When process p has executed line 5, then process q must execute line 17 again.

v. When process p has executed line 5, then process q cannot execute line 17 again.

vi. Process q cannot execute line 17 again unless process p has executed line 5.

vii. Process p has to execute line 5 before q can execute line 17 again.

(b) [????] By considering a property as a set of behaviours (infinite sequences of states),
show that if the state space Σ has at least two states, then any property can be expressed
as the intersection of two liveness properties.

Hint : It may be helpful to know that the union of a liveness property and any other prop-
erty is also a liveness property (this result follows from the fact that liveness properties
are dense sets).

2. Type Safety: Consider this very simple language with function application and two built-in
functions:

e ::= (App e1 e2)
| S
| K

The dynamic semantics evaluate the left hand side of applications as much as possible:

e1 7→ e′1
e1 e2 7→ e′1 e2

The K function takes two arguments and returns the first one.

(App (App K x) y) 7→ x

The S function takes three arguments, applies the first argument to the third, and applies the
result of that to the second argument applied to the third. More clearly:

(App (App (App S x) y) z) 7→ (App (App x z) (App y z))

(a) [??] Define a set of typing rules for this language, where the set of types is described by:

τ ::= τ1 → τ2
| ι

Note that → is right-associative, so τ1 → τ2 → τ3 means τ1 → (τ2 → τ3).

1



(b) [???] In order to prove that your typing rules are type-safe, we must prove progress and
preservation. For progress, we will define the set of final states as all states that have no
successor:

F = {s | @s′. s 7→ s′}

This trivially satisfies progress, as progress states that all well-typed states either have a
successor state or are final states.

Preservation, however, requires a nontrivial proof. Prove preservation for your typing
rules with respect to the dynamic semantics of this language.

3. Haskell Types: Determine a MinHS type that is isomorphic to the following Haskell type
declarations:

(a) [?] data MaybeInt = Just Int | Nothing

(b) [?] data Nat = Zero | Suc Nat

(c) [?] data IntTree = Tree Int IntTree IntTree | Leaf Int

4. Inhabitation: Do the following MinHS types contain any (finite) values? If not, explain why.
If so, give an example value.

(a) [?] rec t. Int + t

(b) [?] rec t. Int× t
(c) [?] (rec t. Int× t) + Bool

5. Encodings: For each of the following sets, give a MinHS type that corresponds to it. Justify
why your MinHS type is equivalent to the set, for example by providing a bijective function
that, given a element of that set, gives the corresponding MinHS value of the corresponding
type.

(a) [?] The natural number set N.

(b) [??] The set of integers Z.

(c) [??] The set of rational numbers Q.

(d) [???] The set of (computable) real numbers RTM. It may be useful to assume a lazy
semantics.

6. Curry-Howard: Give a term in typed λ-calculus that is a proof of the following propositions.
If there is no such term, explain why.

(a) [?] A⇒ A ∨B
(b) [?] A ∧B ⇒ A

(c) [??] P ∨ P ⇔ P
Hint : Recall that A⇔ B is shorthand for A⇒ B ∧B ⇒ A.

(d) [??] (A ∧B ⇒ C)⇔ (A⇒ B ⇒ C)

(e) [??] P ∨ (Q ∧R)⇒ (P ∨Q) ∧ (P ∨R)

(f) [??] P ⇒ ¬(¬P )
Hint : Recall that ¬A is shorthand for A⇒ ⊥.

(g) [???] ¬(¬P )⇒ P

(h) [???] ¬(¬(¬P ))⇒ ¬P
(i) [???] (P ∨ ¬P )⇒ ¬(¬P )⇒ P

Page 2


