
Monadic State Linear Logic Linear Types

Effects and Linear Types

Liam O’Connor

CSE, UNSW (and data61)

Semester 2 2018
1

Monadic State Linear Logic Linear Types

Motivation

Suppose we wanted to model a library using a purely functional
programming language.

borrowBook : Title→ Maybe Book

returnBook : Book→ 1

This is not purely functional. Either borrowBook "Ubik" will
always return Nothing or the book must always be available

⇒ infinite books

There is some hidden state here.

2

Monadic State Linear Logic Linear Types

State-Passing

We can use a similar trick to the big-step semantics of TinyImp,
and pass the state (the Library) as an input to and output of
each function:

borrowBook : Title→ Library→ Library× (Maybe Book)

returnBook : Book→ Library→ Library

I can still get infinite books here, just by borrowing the books
from the same Library. Demonstrate on whiteboard

We need to enforce that, after the Library state has been passed
in to say, borrowBook, the same Library will never be used again.
We also presumably want to enforce that the Library will never
be destroyed by the garbage collector.

3

Monadic State Linear Logic Linear Types

Encapsulation

Let’s define a type Lib a which represents some computation that
changes the Library state and returns a value of type a.

type Lib a = (Library→ Library× a)

Then our library interface can be restated as Lib computations:

borrowBook : Title→ Lib (Maybe Book)
returnBook : Book→ Lib 1

Observe that these types are isomorphic to the ones on the
previous slide. What does this buy us?

Remember that we want the Library state to be threaded linearly
through the program.

4

Monadic State Linear Logic Linear Types

Composition

If we make Lib an abstract data type that hides the internal
definition, but expose our interface functions, we can control how
Lib computations are composed by just exposing one composition
function:

(�=) : Lib a→ (a→ Lib b) → Lib b

Library

Library

Library

b

(implement on whiteboard)

Combine it with a function return : a→ Lib a and we have
ourselves a monad.

5

Monadic State Linear Logic Linear Types

The State Monad

Without exposing the implementation of Lib, it’s now impossible
to get infinite books, as we can only borrow as many books as the
library has.

loop :: Lib [Book]
loop = do

mb ← borrowBook "VALIS"

case mb of
Just b → do bs ← loop; return (b : bs)
Nothing → return []

This program will always return finite lists, because we can’t access
the old Library after we’ve already borrowed from it.

6

Monadic State Linear Logic Linear Types

IO in Haskell

Haskell uses the same technique to model IO or any imperative
computation.

type IO a = (m→ (m, a))

putStrLn :: String→ IO ()

getChar :: IO Char

launchMissiles :: LaunchCodes→ IO ()

As we don’t have a time machine, these actions are irrevocable.
Thus, the same trick of hiding the implementation of IO is used to
enforce linearity of the m.

This approach has some significant drawbacks, however...

7

Monadic State Linear Logic Linear Types

Hoare Logic

We can specify our Lib computations using Hoare Logic, similar to
TinyImp.
Modelling the Library as a multiset of books L:

{L = L0}

borrowBook "Ubik"

{L = L0 \ {"Ubik"}}

Read in English, this says “If the library is L0 before I borrow the
book, then after I borrow the book, the library will be L0 except
with the book I wanted removed.”

8

Monadic State Linear Logic Linear Types

State Composition

What if we had multiple libraries?
We could try passing all the libraries as our hidden state (here just
two):

type Libs a = ((Library× Library)→ (Library× Library)× a)

borrowBookA : Title→ Libs (Maybe Book)
returnBookA : Book→ Libs 1

borrowBookB : Title→ Libs (Maybe Book)
returnBookB : Book→ Libs 1

9

Monadic State Linear Logic Linear Types

Specifying this
Assuming the two libraries are A and B, does our old specification
still suffice?

{A = A0}

borrowBookA "Ubik"

{A = A0 \ {"Ubik"}}

No. We didn’t state that the other library did not change:

{A = A0 ∧ B = B0}

borrowBookA "Ubik"

{A = A0 \ {"Ubik"} ∧ B = B0}

This is called the frame problem. It’s because the type system
doesn’t tell us which parts of the state are affected.

10

Monadic State Linear Logic Linear Types

Non-compositionality

The more state we add into the hidden state of the monad, the
less our type system can help us reason about it. When the state is
the entire world, as in:

foo :: IO ()

This foo function could literally do anything.

11

Monadic State Linear Logic Linear Types

Looking to Logic

Because logics and programming languages correspond (from the
Curry-Howard correspondence), surely some logician has found a
solution to these kinds of problems in that domain.

In this case, that logician was Jean-Yves Girard, and it was the
basis of his work in Linear Logic.

Linear Logic is widely used in computer science, however our
treatment of it in this course is cursory.

12

Monadic State Linear Logic Linear Types

The Problem in Regular Logic

Suppose Alice and Bob both want to read “Dune” by Frank
Herbert. There is only one copy of “Dune” at the library.
We could state two implications, both seemingly true in isolation:

DuneAtLibrary→ BobBorrowsDune

and
DuneAtLibrary→ AliceBorrowsDune

From this we could conclude that if DuneAtLibrary then
BobBorrowsDune ∧AliceBorrowsDune — which should be
impossible.

Standard logic lets us have our cake and eat it too.

13

Monadic State Linear Logic Linear Types

Fixing this issue
There are ways of encoding this more accurately in standard logic,
but they usually run into the same frame problem that we
encountered earlier.
We want to say that if an assumption is used, it should not be
used again.
Normally, we treat our context of assumptions Γ as a set:

A ∈ Γ

Γ ` A
Assumption

More formally, we are allowing the assumptions to be duplicated,
discarded, or rearranged using the following structural rules:

P ` P
Assumption

Γ2, Γ1 ` P

Γ1, Γ2 ` P
Exchange

Q,Q, Γ ` P

Q, Γ ` P
Contraction

Γ ` P

Q, Γ ` P
Weakening

14

Monadic State Linear Logic Linear Types

Substructural Logics

Linear Logic is a substructural logic. It removes some of these
rules, namely, contraction and weakening:

P ` P
Assumption

Γ2, Γ1 ` P

Γ1, Γ2 ` P
Exchange

Q,Q, Γ ` P

Q, Γ ` P
Contraction

Γ ` P

Q, Γ ` P
Weakening

This means we can’t duplicate or discard assumptions anymore,
only rearrange them. It makes our context into a multiset.

15

Monadic State Linear Logic Linear Types

Linear Connectives
In Linear Logic, you can view logical atoms as resources.

A (B A can be transformed into B.
A⊗ B You’ve got both A and B.
A⊕ B You’ve got either A or B, you don’t get to choose.
A & B You can pick from A or B.

!A You’ve got an unlimited amount of A.

Example (Lunch Special)

For $10, you get one serving of tempura, as much rice as you like,
your choice of side salad or miso soup, and the dessert of the day
(fruit or ice cream, depending on season).

$1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1⊗ $1
(

Tempura ⊗ !Rice⊗ (Salad & Miso)⊗ (Fruit⊕ IceCream)

16

Monadic State Linear Logic Linear Types

Back to the Library

In Linear Logic, we could restate our problematic scenario as:

DuneAtLibrary (BobBorrowsDune

DuneAtLibrary (AliceBorrowsDune

This way, if we know DuneAtLibrary then we only know that
BobBorrowsDune⊕AliceBorrowsDune – only one of them may
borrow the one book that is in the library.

17

Monadic State Linear Logic Linear Types

Back to PLs
We want to backport these ideas to a programming language!
Let’s start by eliminating the same structural rules:

x : τ, x : τ, Γ ` e : ρ

x : τ, Γ ` e : ρ
Contraction

Γ ` e : ρ

x : τ, Γ ` P : ρ
Weakening

x : τ, x : τ, Γ ` e : ρ

x : τ, Γ ` e : ρ
Contraction

Γ ` e : ρ

x : τ, Γ ` P : ρ
Weakening

Expressions that involve two evaluations split the context:

Γ1 ` e1 : τ1 → τ2 Γ2 ` e2 : τ1

Γ1Γ2 ` (App e1 e2) : τ2

Expressions that branch use the same context in each branch:

Γ1 ` e1 : Bool Γ2 ` e2 : τ Γ2 ` e3 : τ

Γ1Γ2 ` (If e1 e2 e3) : τ

This means that every variable in scope has to be used exactly
once in each branch of control flow.

18

Monadic State Linear Logic Linear Types

Library Example

borrowBook :: Title→ Library→ Library⊗ (Maybe Book)

loop :: Library→ Library⊗ [Book]
loop ` = let

(`′,mb) = borrowBook ` "VALIS"
in case mb of

Just b → let (`′′, bs) = loop `′ in (`′′, (b : bs))
Nothing → (`′, [])

`

(`′,

Used more than once

Unused

Linear types prevent us from being able to re-use the Library or
discard it.

19

Monadic State Linear Logic Linear Types

Not Everything is Linear

Some things should not be linear. For example, currently linear
types would reject the following program:

let x = 5 in x + x

Clearly, it’s okay to use Ints multiple times, just not anything like,
say, Library.
We’ll bring back contraction and weakening, but only for types
that can be shared, which we’ll write as the judgement τ Share.

x : τ, x : τ, Γ ` e : ρ τ Share

x : τ, Γ ` e : ρ
C

Γ ` e : ρ τ Share

x : τ, Γ ` P : ρ
W

Basic types like Int can be shared, but something like Library

cannot.

20

Monadic State Linear Logic Linear Types

Managing Resources

Linear types can be used to give purely functional interfaces to
mutable, or destructively updated things:

openFile : FileName→ File

writeFile : String→ File→ File

closeFile : File→ 1

Making File linear ensures that we don’t write to stale Files, or
forget to run closeFile on any Files.

21

Monadic State Linear Logic Linear Types

Product Types

Our product types may be constructed in the usual way:

Γ1 ` e1 : τ1 Γ2 ` e2 : τ2

Γ1Γ2 ` (e1, e2) : τ1 ⊗ τ2

They can be shared iff their components can be shared:

τ1 Share τ2 Share

τ1 ⊗ τ2 Share

Can they be destructed in the normal way?

fst : a⊗ b → a snd : a⊗ b → b

No, the other side of the pair is discarded without being used!

22

Monadic State Linear Logic Linear Types

Splitting Products

We need a special form of expression to unpack pairs without
discarding one of the elements:

Γ1 ` e1 : τ1 ⊗ τ2 x : τ1, y : τ2, Γ2 ` e2 : τ

Γ1Γ2 ` (Split e1 (x .y . e2)) : τ

23

Monadic State Linear Logic Linear Types

Functions

Can we make functions shareable?

If a function captures a linear variable in its closure, then it is
possible to circumvent the linear type system and get multiple
copies of the same linear resource:

dupLibrary : Library→ Library⊗ Library

dupLibrary ` = let f = (λ . `) in (f (), f ())

24

Monadic State Linear Logic Linear Types

Solution

One shareable function type, τ1 → τ2, and a linear function type,
τ1 (τ2. The former requires all variables in the captured context
to be shareable, but can be itself shared:

all Γ Share f : τ1 → τ2, x : τ1, Γ ` e : τ2

Γ ` (Fun (f .x . e)) : τ1 → τ2 τ1 → τ2 Share

Linear functions τ1 (τ2 can only be called once:

x : τ1, Γ ` e : τ2

Γ ` (LinFun (x . e)) : τ1 (τ2

25

Monadic State Linear Logic Linear Types

Reading Pains

Suppose we wanted a function to get the size of a file. What type
should it have?

sizeOfFile :: File→ (Int⊗ File)

This is cumbersome. It appears as though getting the size of the
file might change the file.Is there some way to get a shareable,
read-only version of the File?

26

Monadic State Linear Logic Linear Types

Let!
The expression let! (v) x = e1 in e2 makes a linear variable v : ρ
into a temporarily shareable version !ρ inside e1. !ρ is called an
observer in the literature or a borrow in Rust.

v :!ρ, Γ1 ` e1 : τ1 v : ρ, x : τ1, Γ2 ` e2 : τ2

v : ρ, Γ1Γ2 ` let! (v) x = e1 in e2 : τ2

Then we can have:

sizeOfFile :: !File→ Int

And call it on a file with:

let! (f) size = sizeOfFile f in . . .

Can we duplicate or discard linear resources with this? Can we
violate purity?

27

Monadic State Linear Logic Linear Types

Making Let! Safe

If we imagine that the file is destructively updated, then we could
use let! to have both a File and an observer of that file in scope
at the same time:

let! (f) x = f in (writeFile "Hello" f , x)

Changes to f could be observed through x , thus breaking purity.
This can be addressed by enforcing that the observer cannot be
bound in the let!, either using escape analysis or some type-based
approximation.

28

Monadic State Linear Logic Linear Types

Uniqueness Types

malloc : Size→ Buffer

poke : Offset→ Char→ Buffer→ Buffer

peek : Offset→ !Buffer→ Char

free : Buffer→ 1

If all heap-allocated objects are linear, then we ensure that there is
only one writable pointer to any heap object at a time. This makes
uniqueness types.

1 The type system ensures all malloc calls have a corresponding
free ⇒ No need for garbage collection.

2 The uniqueness of pointers means that poke can destructively
update the buffer, not create a new one.

3 We can use observers to state in the types that peek does not
write to the buffer.

4 We have both a stateful update semantics, and a purely
functional value semantics.

29

Monadic State Linear Logic Linear Types

Applications

The language Cogent (my PhD) uses linear uniqueness types
to manage effects and state, aimed at simplifying formal
verification.

Rust makes use of uniqueness types to ensure memory safety
and garbage collection, even though it does not have a
functional semantics.

Haskell and Swift have plans to adopt linear or uniqueness
types at various levels of maturity.

Idris has a basic linear type system extension.

30

	Monadic State
	Linear Logic
	Linear Types

