THE UNIVERSITY OF NEW SOUTH WALES

Sample Exam

Session 2 2011

COMP3161/COMP9161

Concepts of Programming Languages

- Time allowed: 2 hours
- Total number of questions: 4
- Answer all questions
- The questions are of equal value
- Answer each question in a separate answer booklet
- This paper may not be retained by the candidate
- Answers must be written in ink, with the exception of graphs
- Drawing instruments or rules may be used
- There is a 3% penalty if you do not fill in your student number and name correctly
Question 1 [25 Marks]
Consider the following inductive definition of evaluation rules for a restricted form of boolean expressions.

Boolean expressions:

\[
\begin{array}{c c c c c}
\text{true} & \text{false} \\
\hline
b_1 & b_2 & b \\
\hline
\text{and}(b_1, b_2) & \text{not}(b)
\end{array}
\]

Evaluation rules:

\[
\begin{align*}
\text{and}(\text{true}, b) & \mapsto b \\
\text{and}(\text{false}, b) & \mapsto \text{false} \\
\text{not}(\text{false}) & \mapsto \text{true} \\
\text{not}(\text{true}) & \mapsto \text{false} \\
b & \mapsto b' \\
\text{not}(b) & \mapsto \text{not}(b') \\
\text{and}(b_1, b_2) & \mapsto \text{and}(b'_1, b_2)
\end{align*}
\]

A) [7 marks]
Give the derivation of the evaluation for the following expression:

- \(\text{and}(\text{not}(\text{false}), \text{and}(\text{true}, \text{not}(\text{true})))\)

B) [7 marks]
Are the rules unambiguous? If so, briefly explain why. If not, give an example expression for which the set of rules allow more than a single derivation.

C) [11 marks]
The rules listed above give a small step semantics. List the inference rules which specify an equivalent big step semantics.
Question 2 [25 Marks]

A) [10 marks]
In the lecture, we discussed the E-machine as an example of an abstract machine which handles value bindings explicitly by maintaining a value environment. One of the possible return values of the E-machine are function closures.

i) What is a function closure?

ii) Give an example of an expression whose evaluation in the E-machine requires the creation of a closure.

B) [15 marks]
We discussed two distinct methods to handle exceptions: the first method required that, when an exception is thrown, the evaluation unrolls the stack until the matching catch-expression is found. The second method made it possible to directly jump to the matching catch-expression. Describe the second method:

i) What are the components of the state of the abstract machine?

ii) How does the state of the machine change when a `catch`-expression is evaluated?

iii) How does the state of the machine change when a `raise`-expression is evaluated?

For (ii) and (iii), you do not have to give the exact transition rule — it is sufficient to describe how the state is affected.
Question 3 [25 Marks]

A) [6 marks]
For each of the following three pairs of type expressions determine whether the pair has a most
general unifier? If so, please provide it.

i) \((a, b) \rightarrow (b, a)\) and \((int, c) \rightarrow (c, c)\)

ii) \(a \rightarrow (a, a)\) and \((b, b) \rightarrow b\)

iii) \(int \rightarrow int\) and \(float \rightarrow int\)

B) [9 marks]
Give the principal type of the following (polymorphic) MinHs expressions:

i) \(\text{Inr(Inl(True))}\)

ii) letfun f (x) is fst (snd (x));

iii) letfun g (x) is
 case x of
 Inl(a) -> a
 Inr(b) -> b
 end
 end

C) [10 marks]
Consider the following MinHs types:

- \(\forall a. \forall b. (a \times b \rightarrow c) \rightarrow (a \rightarrow b \rightarrow c)\)
- \(\forall a. \forall b. (a \rightarrow b) \rightarrow (b \rightarrow a)\)
- \(\forall a. \forall b. \forall c. (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow (c \rightarrow a)\)
- \(\forall a. () \rightarrow a\)
- \(\forall a. a \rightarrow ()\)

For which of these types exist terminating MinHs functions?
Question 4 [25 Marks]

A) [10 marks]
 Progress and preservation are central concepts for strongly typed languages.
 i) Give the definition of progress and of preservation in the context of a strongly typed language.
 ii) The presence of partial functions can be problematic with respect to progress. Describe how they can be handled in a strongly typed language such that both progress and preservation still hold.

B) [5 marks]
 Give an example each for a type constructor which is covariant and a type constructor which is contravariant in at least one of its argument positions.

C) [10 marks]
 Java’s array type is covariant. Why is this problematic?