Structural Induction with Haskell

Johannes Åman Pohjola
UNSW
Term 3 2022
Definition

Let $P(x)$ be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}. P(x)$, we can use induction:

1. **Base Case**: Show $P(0)$.
2. **Inductive Step**: Assuming $P(k)$ (the inductive hypothesis), show $P(k+1)$.

Example (Sum of Integers)

Write a recursive function `sumTo` to sum up all integers from 0 to the input n.

Show that: $\forall n \in \mathbb{N}. \text{sumTo}(n) = \frac{n(n+1)}{2}$
Recap: Induction

Definition

Let $P(x)$ be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}. P(x)$, we can use induction:

- Show $P(0)$

Example (Sum of Integers)

Write a recursive function `sumTo` to sum up all integers from 0 to the input n.

Show that:

$\forall n \in \mathbb{N}. \sumTo n = \frac{n(n+1)}{2}$
Recap: Induction

Definition

Let $P(x)$ be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}. P(x)$, we can use induction:

- Show $P(0)$
- Assuming $P(k)$ (the inductive hypothesis), show $P(k + 1)$.

Example (Sum of Integers)
Write a recursive function `sumTo` to sum up all integers from 0 to the input n.

Show that:
$\forall n \in \mathbb{N}. \text{sumTo}(n) = \frac{n(n + 1)}{2}$
Recap: Induction

Definition
Let $P(x)$ be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}. P(x)$, we can use induction:

- Show $P(0)$
- Assuming $P(k)$ (the inductive hypothesis), show $P(k + 1)$.

Example (Sum of Integers)
Write a recursive function $sumTo$ to sum up all integers from 0 to the input n.

\[\forall n \in \mathbb{N}. \quad sumTo(n) = n(n + 1) / 2 \]
Recap: Induction

Definition

Let $P(x)$ be a predicate on natural numbers $x \in \mathbb{N}$. To show $\forall x \in \mathbb{N}. P(x)$, we can use induction:

- Show $P(0)$
- Assuming $P(k)$ (the *inductive hypothesis*), show $P(k + 1)$.

Example (Sum of Integers)

Write a recursive function `sumTo` to sum up all integers from 0 to the input n.

Show that:

$$\forall n \in \mathbb{N}. \; \text{sumTo} \; n = \frac{n(n + 1)}{2}$$
Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

```
data Nat = Z | S Nat
```
Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

\[
\text{data } \textit{Nat} = \textit{Z} \mid \textit{S Nat}
\]

Example

Define addition, prove that \(\forall n. \ n + \textit{Z} = n \).
Haskell Data Types

We can define natural numbers as a Haskell data type, reflecting this inductive structure.

```
data Nat = Z | S Nat
```

Example

Define addition, prove that $\forall n. n + Z = n$.

Inductive Structure

Observe that the non-recursive constructors correspond to **base cases** and the recursive constructors correspond to **inductive cases**.
Lists are singly-linked lists in Haskell. The empty list is written as `[]` and a list node is written as `x : xs`. The value `x` is called the head and the rest of the list `xs` is called the tail. Thus:

```
"hi!" == ['h', 'i', '!'] == 'h' : ('i' : ('!': []))
```

When we define recursive functions on lists, we use the last form for pattern matching.

Example (Re)-define the functions `length`, `take` and `drop`.
Lists

Lists are singly-linked lists in Haskell. The empty list is written as `[]` and a list node is written as `x : xs`. The value `x` is called the head and the rest of the list `xs` is called the tail. Thus:

```
"hi!" == ['h', 'i', '!'] == 'h' : ('i' : ('!' : []))
```

```
== 'h' : 'i' : '!' : []
```

When we define recursive functions on lists, we use the last form for pattern matching.

Example

(Re)-define the functions `length`, `take` and `drop`.
Induction on Lists

If lists weren’t already defined in the standard library, we could define them ourselves:

```
data List a = Nil | Cons a (List a)
```
Induction on Lists

If lists weren’t already defined in the standard library, we could define them ourselves:

\[
data \; \text{List} \; a = \text{Nil} \mid \text{Cons} \; a \; (\text{List} \; a)
\]

Induction

If we want to prove that a proposition holds for all lists:

\[
\forall xs. \; P(xs)
\]

It suffices to:

1. Show \(P([\]) \) (the base case from nil)
2. Assuming the inductive hypothesis \(P(xs) \), show \(P(x:xs) \) (the inductive case from cons)
Induction on Lists

If lists weren’t already defined in the standard library, we could define them ourselves:

\[
data \text{List } a = \text{Nil} \mid \text{Cons } a \ (\text{List } a)
\]

Induction

If we want to prove that a proposition holds for all lists:

\[
\forall \text{xs. } P(\text{xs})
\]

It suffices to:

1. Show \(P([\])) \) (the base case from nil)
Induction on Lists

If lists weren’t already defined in the standard library, we could define them ourselves:

\[
\text{data } \text{List } a = \text{Nil} \mid \text{Cons } a \ (\text{List } a)
\]

Induction

If we want to prove that a proposition holds for all lists:

\[\forall xs. \ P(xs)\]

It suffices to:

1. Show \(P([\]) \) (the base case from nil)
2. Assuming the inductive hypothesis \(P(xs) \), show \(P(x:xs) \) (the inductive case from cons).
Induction on Lists

Example (Take and Drop)

- Show that \(\text{take} (\text{length } xs) \ xs = \ xs \) for all \(xs \).
Induction on Lists

Example (Take and Drop)

- Show that \(\text{take} \ (\text{length} \ xs) \ xs = xs \) for all \(xs \).
- Show that \(\text{take} \ 5 \ xs \ ++ \ \text{drop} \ 5 \ xs = xs \) for all \(xs \).
Induction on Lists

Example (Take and Drop)

- Show that \(\text{take} \ (\text{length} \ xs) \ xs = xs \) for all \(xs \).
- Show that \(\text{take} \ 5 \ xs ++ \text{drop} \ 5 \ xs = xs \) for all \(xs \).

\[\implies \] Sometimes we must \textbf{generalise} the proof goal.
Induction on Lists

Example (Take and Drop)

- Show that $\text{take} \ (\text{length} \ \text{xs}) \ \text{xs} = \text{xs}$ for all xs.
- Show that $\text{take} \ 5 \ \text{xs} \ ++ \ \text{drop} \ 5 \ \text{xs} = \text{xs}$ for all xs.

\implies Sometimes we must generalise the proof goal.
\implies Sometimes we must prove auxiliary lemmas.
Binary Trees

data Tree a = Leaf
 | Branch a (Tree a) (Tree a)
Binary Trees

data Tree a = Leaf
 | Branch a (Tree a) (Tree a)

Induction Principle

To prove a property $P(t)$ for all trees t:

- Prove the base case $P(Leaf)$.
Binary Trees

data Tree a = Leaf
| Branch a (Tree a) (Tree a)

Induction Principle

To prove a property $P(t)$ for all trees t:

- Prove the base case $P(\text{Leaf})$.
- Assuming the two *inductive hypotheses*:
Binary Trees

data Tree a = Leaf
 | Branch a (Tree a) (Tree a)

Induction Principle

To prove a property $P(t)$ for all trees t:

- Prove the base case $P(Leaf)$.
- Assuming the two *inductive hypotheses*:
 - $P(l)$ and
 - $P(r)$
Binary Trees

data Tree a = Leaf
 | Branch a (Tree a) (Tree a)

Induction Principle

To prove a property $P(t)$ for all trees t:

- Prove the base case $P(\text{Leaf})$.
- Assuming the two *inductive hypotheses*:
 - $P(l)$ and
 - $P(r)$

We must show $P(\text{Branch x l r})$.
Binary Trees

data Tree a = Leaf
| Branch a (Tree a) (Tree a)

Induction Principle

To prove a property $P(t)$ for all trees t:

- Prove the base case $P(Leaf)$.
- Assuming the two inductive hypotheses:
 - $P(l)$ and
 - $P(r)$

We must show $P(Branch x l r)$.

Example (Tree functions)

Define leaves and height, and show $\forall t. \text{height } t < \text{leaves } t$
Rose Trees

data Forest a = Empty | Cons (Rose a) (Forest a)

data Rose a = Node a (Forest a)

Note that Forest and Rose are defined mutually.
Rose Trees

data Forest a = Empty | Cons (Rose a) (Forest a)

data Rose a = Node a (Forest a)

Note that Forest and Rose are defined mutually.

Example (Rose tree functions)
Define size and height, and try to show

\(\forall t. \text{height } t \leq \text{size } t \)
Simultaneous Induction

To prove a property about two types defined mutually, we have to prove two properties simultaneously.

```
data Forest a = Empty | Cons (Rose a) (Forest a)
```

```
data Rose a = Node a (Forest a)
```

Inductive Principle

To prove a property $P(t)$ about all $Rose$ trees t and a property $Q(ts)$ about all $Forests$ ts simultaneously:
Simultaneous Induction

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

```
data Forest a = Empty | Cons (Rose a) (Forest a)
```

```
data Rose a = Node a (Forest a)
```

Inductive Principle

To prove a property $P(t)$ about all $Rose$ trees t and a property $Q(ts)$ about all $Forests$ ts simultaneously:

- Prove $Q(Empty)$
Simultaneous Induction

To prove a property about two types defined mutually, we have to prove two properties *simultaneously*.

\[
data Forest a = \text{Empty} \mid \text{Cons} (\text{Rose } a) (\text{Forest } a)
\]

\[
data Rose a = \text{Node } a (\text{Forest } a)
\]

Inductive Principle

To prove a property \(P(t) \) about all \(Rose \) trees \(t \) and a property \(Q(ts) \) about all \(Forests \) \(ts \) simultaneously:

- Prove \(Q(\text{Empty}) \)
- Assuming \(P(t) \) and \(Q(ts) \) (inductive hypotheses), show \(Q(\text{Cons } t \ ts) \).
Simultaneous Induction

To prove a property about two types defined mutually, we have to prove two properties simultaneously.

\[
\text{data } \text{Forest } a = \text{Empty} \mid \text{Cons } (\text{Rose } a) (\text{Forest } a)
\]

\[
\text{data } \text{Rose } a = \text{Node } a (\text{Forest } a)
\]

Inductive Principle

To prove a property \(P(t) \) about all Rose trees \(t \) and a property \(Q(ts) \) about all Forests \(ts \) simultaneously:

- Prove \(Q(\text{Empty}) \)
- Assuming \(P(t) \) and \(Q(ts) \) (inductive hypotheses), show \(Q(\text{Cons } t ts) \).
- Assuming \(Q(ts) \) (inductive hypothesis), show \(P(\text{Node } x ts) \).