1. **Strange Loops**: The following system, based on a system called Miu, is perhaps famously mentioned in Douglas Hofstadter’s book, *Gödel, Escher, Bach*.

\[
\begin{array}{cccc}
\text{MI} & \text{Miu} & \frac{xI \text{ Miu}}{xI \text{ Miu}} & \frac{Mx \text{ Miu}}{xIy \text{ Miu}} & \frac{xUUy \text{ Miu}}{xy \text{ Miu}} \\
\end{array}
\]

(a) [⋆] Is MI Miu derivable? If so, show the derivation tree. If not, explain why not.

Solution:

```
  MI Miu
  /   \
 /     \
MI     MI Miu
 |     /   \
|    /     \
MII   MI Miu
 |   /       \
|  /        \
MIII MI Miu
 | /          \
|/           \
MIII MIIIU Miu
 | /           \
|/            \
MIII MIIIU Miu
 | /             \
|/               \
MIII MIIIU Miu
```

(b) [⋆⋆] Is xIU Miu admissible? Is it derivable? Justify your answer.

Solution: It is not derivable, but it is admissible. It is not derivable because there is no way to construct a tree that looks like this:

```
  xIU Miu
    \;
  xI Miu
```

I believe it is, however, admissible because it does not change the language Miu. I think there is no string \(x \) that could be judged \(x \text{ Miu} \) with this rule that could not be so judged without it, although I welcome any counterexample or proof.

(c) [⋆⋆⋆⋆] Perhaps famously, MU Miu is not admissible. Prove this using rule induction. *Hint:* Try proving something related to the number of Is in the string.

Solution: We will prove that the number of Is in any string in Miu is not divisible by three. Seeing as MU has zero Is (a multiple of three), if we prove the above, we prove that MU is not admissible.

Base Case (From rule 1). We see that the string MI has only one I, which is not a multiple of three, hence we have shown our goal.

Inductive case (From rule 2). Given that the number of Is in xI is not divisible by three (our inductive hypothesis), we can easily see that the number of Is in xIU is identical and therefore is similarly not divisible by three.

Inductive case (From rule 3). Let \(n \) be the number of Is in Mx. Our inductive hypothesis is that 3 \(\nmid n \). The number of Is in Mxx, clearly 2n, is similarly indivisible, i.e 3 \(\nmid n \implies 3 \nmid 2n \).
(d) Here is another language, which we’ll call M_i:

$$
\begin{array}{c}
M_i \ M_i \\
A \ M_i \ M_i \\
B \ x_{III}y \\
C \ x_{y} \\
\end{array}
$$

i. [***] Prove using rule induction that all strings in M_i could be expressed as follows, for some k and some i, where $2^k - 6i > 0$ (where C^n is the character C repeated n times):

$$M_i^{2^k-6i}$$

Solution:

Base case (From rule A). $M_i = M_i^{2^k-6i}$ when $2^k - 6i = 1$, i.e when $k = 0$ and $i = 0$.

Inductive case (From rule B) Given that $M_i = M_i^{2^k-6i}$ (our inductive hypothesis), we must show that $M_i x = M_i^{2^k-6i+6}$ for some k and some i. As $x = 1^{2^k-6b}$ (from I.H), it is easy to see that $x = 1^{2^k-6b} = 1^{2^k-6b+6}$ for $k = a + 1$ and $i = b + 1$.

Inductive case (From rule C) Given that $x_{III}y = M_i^{2^k-6b}$ (our inductive hypothesis). We must show that $xy = M_i^{2^k-6i}$ for some k and i. It should be clear to see that this rule simply subtracts six i characters, and therefore $xy = M_i^{2^k-6i+6}$, hence $k = a + 1$ and $i = b + 1$.

Thus, all strings in M_i can be expressed as $M_i^{2^k-6i}$ where $2^k - 6i > 0$.

ii. We will now prove the opposite claim that, for all k and i, assuming $2^k - 6i > 0$:

$$M_i^{2^k-6i} M_i$$

To prove this we will need a few lemmas which we will prove separately.

$a)$ [**] Prove, using induction on the natural number k (i.e. when $k = 0$ and when $k = k' + 1$), that $M_i^{2^k} M_i$

Solution:

Base case (when $k = 0$). We have to show $M_i M_i$, which is true by rule A.

Inductive case (when $k = k' + 1$) We have to show $M_i^{2^{k'+1}} M_i$, with the inductive hypothesis that $M_i^{2^{k'}} M_i$. Equivalently, we have to show $M_i^{2^{k'+1}} M_i$, as follows:

$$
\begin{array}{c}
I.H \\
M_i^{2^{k'}} M_i \\
M_i^{2^{k'+1}} M_i \\
\end{array}
$$

Therefore, by induction on the natural number k, we have shown $\forall k. M_i^{2^k} M_i$.

$b)$ [**] Prove, using induction on the natural number i, that $M_i^k M_i$ implies $M_i^{k-6i} M_i$, assuming $k - 6i > 0$.

Solution:

$\begin{array}{c}
Base case (when i = 0) \end{array}$ We must show that $M_i^k M_i$ implies $M_i^{k-0} M_i$, which is obviously a tautology.
Inductive case (when $i = i' + 1$) We must show that $M I^k M_I$ implies $M I^{k-6(i'+1)} M_I$, given the inductive hypothesis that $M I^{k-6i'} M_I$. Note that our I.H can be restated as $M I^{k-6(i'+1)} M_I$ due to our assumption that $k - 6(i' + 1) > 0$. With this, we can prove our goal as shown:

\[
\frac{M I^{k-6(i'+1)} M_I}{M I^{k-6(i'+1)} M_I} \quad \text{I.H}
\]

Therefore, our goal is shown by induction.

Hence, as we know $M I^{2k} M_I$ for all k from lemma α, we can conclude from lemma β that $M I^{2k-6i} M_I$ for all k and all i where $2^k - 6i > 0$ by modus ponens.

These two parts prove that the language M_I is exactly characterised by the formulation $M I^{2k-6i}$ where $2^k - 6i > 0$. A very useful result!

iii. \star Hence prove or disprove that the following rule is admissible in M_I:

\[
\frac{M x \quad M_I}{M x M_I} \quad \text{LEM}_1
\]

Solution: We know from part i that $M x M_I \implies x^2 = I^{2k-6i}$ for some k and some i where $2^k - 6i > 0$.

This rule is not admissible as it adds strings to the language. As $2^4 - 6 = 10$, we know $M I^{10}$ is in the language. This rule would make $M I^5$ a string in the language which it is not as there is no k and i such that $2^k - 6i = 5$.

iv. \star Why is the following rule not admissible in M_I?

\[
\frac{x y \quad M_I}{x M_I \quad M_I} \quad \text{LEM}_2
\]

Solution: The rule is not admissible as it adds strings to the language. This allows us to add six I characters to any string in M_I and judge it in M_I, which results in additional strings. For example, applying the rule to $M I^2$ (which is in M_I), gives us $M I^7$, when our existing formulation of $M_I (M I^{2k-6i})$ clearly only allows for even amounts of Is.

v. $\star \star \star$ Prove that, for all s, $s M_I \implies s M_I u$. Note that using straightforward rule induction appears to necessitate LEM_2 above, which we know is not admissible. Try proving using the characterisation we have already developed.

Solution: We shall show that all strings in M_I, characterised by $M I^{2k-6i}$ where $2^k - 6i > 0$, are also in $M_I u$. That is, we shall show that $M I^{2k-6i} M_I u$.

To start, we shall prove inductively on k that $M I^{2k} M_I u$ for all k.

Base case (where $k = 0$). We must show $M I M_I u$, which we know trivially from rule 1.

Inductive case (where $k = k' + 1$). We must show $M I^{2k'+1} M_I u$, given the inductive hypothesis that $M I^{2k'} M_I u$. Note we can restate our proof goal as $M I^{2k'} I^{2k'} M_I u$

\[
\frac{M I^{2k'} M_I u}{M I^{2k'} M_I u} \quad \text{I.H}
\]

Thus we have shown by induction that $M I^{2k} M_I u$ for all k.

Next we must prove that $M I^k M_I u$ implies $M I^{k-6i} M_I u$ for all i, assuming $k - 6i > 0$.

Page 3
2. Counting Sticks: The following language (also presented in a similar form by Douglas Hofstadter, but the original invention is not his) is called the $\Phi \Psi$ system. Unlike the Mi language discussed above, this language is not comprised of a single judgement, but of a ternary relation, written $x \Phi y \Psi z$, where x, y and z are strings of hyphens (i.e. ‘$-$’), which may be empty (ϵ). The system is defined as follows:

\[
\begin{align*}
\epsilon \Phi x \Psi x & \quad B & \quad \frac{x \Phi y \Psi z}{-x \Phi y \Psi -z} \\
= & \quad \frac{x \Phi y \Psi z}{-x \Phi y \Psi -z} & \quad I
\end{align*}
\]

(a) [**] Prove that $- - \Phi ----- \Psi -----$.

Solution:

\[
\begin{align*}
\begin{array}{c}
\epsilon \Phi x \Psi x \\
B
\end{array} & \quad \frac{x \Phi y \Psi z}{-x \Phi y \Psi -z} & \quad I
\end{align*}
\]

(b) [**] Is the following rule admissible? Is it derivable? Explain your answer

\[
\frac{-x \Phi y \Psi -z}{x \Phi y \Psi z}
\]

Solution: It is not derivable (as it cannot be shown with a proof tree), but it is admissible. We know this because the language definition for $\Phi \Psi$ is unambiguous, so the only way for $-x \Phi y \Psi -z$ to hold is if this was established by rule I. Therefore, we can deduce that $x \Phi y \Psi z$, as this is the premise of rule I. We can often “flip” or invert rules in this way, but only if the language definition is unambiguous.

(c) [***] Show that $x \Phi \epsilon \Psi x$, for all hyphen strings x, by doing induction on the length of the hyphen string (where $x = \epsilon$ and $x = -x'$).

Solution:

Base case (where $x = \epsilon$). We must show that $\epsilon \Phi \epsilon \Psi \epsilon$, which is trivially true by rule B.

Inductive case (where $x = -x'$) We have the inductive hypothesis $x' \Phi \epsilon \Psi x'$, and must show that $-x' \Phi \epsilon \Psi -x'$. Our goal trivially reduces to our induction hypothesis by rule I. Therefore we have shown $x \Phi \epsilon \Psi x$ for all x by induction on x.

(d) [***] Show that if $-x \Phi y \Psi z$ then $x \Phi -y \Psi z$, for all hyphen strings x, y and z, by doing induction on the size of x.

Solution: We shall do induction on x where we keep y and z as arbitrary.

Base case. (where $x = \epsilon$). We must show that if $- \Phi y \Psi z$ then $\epsilon \Phi -y \Psi z$. Observe that the only way for $- \Phi y \Psi z$ to hold is if $z = -y$. Therefore we must show that $\epsilon \Phi -y \Psi -y$ which is true by rule B.
Inductive case. (From rule I, where \(x = -x' \)). We have the inductive hypothesis that \(-x' \Phi y' \Psi z'\) implies \(x' \Phi -y' \Psi z'\) for any \(y', z'\).

We must show that \(-x' \Phi y \Psi z\) implies \(-x' \Phi -y \Psi z\). Observe that the only way that \(-x' \Phi y \Psi z\) could hold is if \(z = -k\) for some \(k\), then by the rule \(I'\) which we have already shown to be admissible, we know that \(-x' \Phi y \Psi k\). Using our induction hypothesis where \(y' = y\) and \(z' = k\), we can establish that \(x' \Phi -y \Psi k\), and therefore by rule \(I\) we can finally conclude that \(-x' \Phi -y \Psi -k\) as required.

(e) [⋆⋆] Show that \(x \Phi y \Psi z\) implies \(y \Phi x \Psi z\).

Solution: We show this by rule induction on the premise with the rules of \(\Phi \Psi\).

Base case. (From rule B, where \(\epsilon \Phi y \Psi y\)). We must show that \(y \Phi \epsilon y \Psi y\). We proved this, most fortunately, above in part (c).

Inductive case. (From rule I, where \(-x' \Phi y \Psi -z'\)). We have the inductive hypothesis that
\[y \Phi x' \Psi z' \]

We must show that \(y \Phi -x' \Psi -z'\).

\[
\begin{align*}
&\frac{y \Phi x' \Psi z' \text{I.H}}{-y \Phi x' \Psi -z'} \\
&\frac{-y \Phi x' \Psi -z'}{y \Phi -x' \Psi -z'} \text{(d)}
\end{align*}
\]

Thus we have shown by induction that \(x \Phi y \Psi z\) implies \(y \Phi x \Psi z\).

(f) [⋆⋆] Have you figured out what the \(\Phi \Psi\) system actually is? Prove that if \(-x' \Phi -y \Psi -z\), then \(z = -x' + y\) (where \(-x'\) is a hyphen string of length \(x\)).

Solution: We proceed by rule induction on the premise.

Base case. (From rule B, where \(-0 \Phi -y \Psi -y\)), we must show that \(0 + y = y\), which holds trivially.

Inductive case (From rule I, where \(-x' +1 \Phi -y \Psi -z' +1\)), we have the inductive hypothesis that \(z' = x' + y\). We must show that \(z' + 1 = (x' + 1) + y\), or, equivalently, that \(z' = x' + y\), which is just our I.H.

Thus we have shown by rule induction that the \(\Phi \Psi\) system is in fact unary addition.

3. Ambiguity and Simultaneity: Here is a simple grammar for a functional programming language \(^1\):

\[
\begin{array}{ccccccc}
& x & \in & \mathbb{N} & & & \\
& x & \text{Var.} & & e_1 & \text{Expr.} & e_2 & \text{Expr.} & & e & \text{Expr.} & & e & \text{Expr.} & & e & \text{Expr.} & & (e) & \text{Expr.} & & \text{PAREN.}
\end{array}
\]

(a) [*] Is this grammar ambiguous? If not, explain why not. If so, give an example of an expression that has multiple parse trees.

Solution: Yes, the expression 1 2 3 could be parsed two different ways, i.e:

\[
\begin{array}{ccccccc}
& 1 & \text{Var.} & & 2 & \text{Var.} & & 3 & \text{Var.} & & \text{PAREN.}
\end{array}
\]

Or:

\[
\begin{array}{ccccccc}
& 1 & \text{Var.} & & 2 & \text{Var.} & & 3 & \text{Var.} & & \text{PAREN.}
\end{array}
\]

\(^1\) if you’re interested, it’s called lambda calculus, with de Bruijn indices syntax, not that it’s relevant to the question!
(b) [***] Develop a new (unambiguous) grammar that encodes the left associativity of application, that is 1 2 3 4 should be parsed as ((1 2) 3) 4 (modulo parentheses). Furthermore, lambda expressions should extend as far as possible, i.e \(\lambda 1 2 \) is equivalent to \(\lambda (1 2) \) not \((\lambda 1) 2 \).

Solution:

\[
\begin{align*}
x & \in \mathbb{N} \quad \text{AVar.} \\
x & \in \text{AEexpr} \quad \text{PExpr} \\
e_1 & \text{PEexpr} \quad e_2 \in \text{AExpr} \quad \text{AAppl.} \\
\lambda e & \in \text{LEexpr} \quad \text{AAbs.} \\
l & \in \text{LEexpr} \quad e & \in \text{PEexpr} \\
l & \in \text{AExpr} \\
(e) & \in \text{AParen.} \\
y & \in \text{PExpr} \\
(\lambda e) & \in \text{LAexpr} \\
l & \in \text{LEexpr} \\
\text{SHUNT}_1 & \text{PEexpr} \\
\text{SHUNT}_2 & \text{PEexpr}
\end{align*}
\]

(c) [***] Prove that all expressions in your grammar are representable in \(\text{Expr} \), that is, that your grammar describes only strings that are in \(\text{Expr} \).

Solution: We shall prove the following simultaneously:

- \(x \in \text{LEexpr} \Rightarrow x \in \text{Expr} \)
- \(x \in \text{PEexpr} \Rightarrow x \in \text{Expr} \)
- \(x \in \text{AEexpr} \Rightarrow x \in \text{Expr} \)

Proof. Base case (From rule \(\text{AVar.} \), where \(x \in \text{AEexpr} \) for some \(x \in \mathbb{N} \)). We must show \(x \in \text{Expr} \), trivial by rule \(\text{Var.} \).

Inductive case. (From rule \(\text{AAppl.} \), where \(e_1 e_2 \in \text{PEexpr} \)). We know \(e_1 \in \text{PEexpr} \) and \(e_2 \in \text{AEexpr} \) which give rise to inductive hypotheses \(e_1 \in \text{Expr} \) (I.H\(_1\)) and \(e_2 \in \text{Expr} \) (I.H\(_2\)). We must show that \(e_1 e_2 \in \text{Expr} \).

\[
\frac{e_1 \in \text{Expr} \quad \text{I.H}_1}{e_1 e_2 \in \text{Expr}} \quad \frac{e_2 \in \text{Expr} \quad \text{I.H}_2}{e_1 e_2 \in \text{Expr}}
\]

Inductive case. (From rule \(\text{AAbs.} \), where \(\lambda x \in \text{LEexpr} \)). We know that \(x \in \text{LEexpr} \), giving inductive hypothesis \(x \in \text{Expr} \). The rule \(\text{Abs.} \) then proves our goal: \(\lambda x \in \text{Expr} \).

Inductive case. (From rule \(\text{AParen.} \), where \((x) \in \text{AEexpr} \)). We know that \(x \in \text{LEexpr} \), giving inductive hypothesis \(x \in \text{Expr} \). Then by rule \(\text{Paren.} \) we show our goal \((x) \in \text{Expr} \).

The inductive case for the rules \(\text{SHUNT}_1 \) and \(\text{SHUNT}_2 \) are trivial as they do not alter the expression.

Thus, by induction, \(s \in \text{LEexpr} \land s \in \text{PEexpr} \land s \in \text{AEexpr} \Rightarrow s \in \text{Expr} \). We can state this more succinctly thanks to the \(\text{SHUNT} \) rules as \(s \in \text{LEexpr} \Rightarrow s \in \text{Expr} \). \(\square \)

4. Regular Expressions: Consider this language used to describe regular expressions consisting of:

- single characters, written \(c \)
- Sequential composition, written \(R; R \)
- Nondeterministic choice, written \(R \lor R \)
- Kleene star, written \(R^* \)
- Grouping parentheses.

\[
\begin{array}{ccccccc}
 c & \text{Char} & a & \text{R} & b & \text{R} & a & \text{R} & b & \text{R} & a & \text{R} & \text{a R} & \text{a R} \\
 c & \text{R} & a & \text{R} & \text{a ; b R} & a & \text{R} & \text{b R} & a & \text{R} & \text{a } \text{ R} & \text{(a) R} \\
\end{array}
\]

(a) [*] In what way is this grammar ambiguous? Identify an expression with multiple parse trees.
Solution: Precedence between choice and sequential composition is not enforced, and the associativity of the two binary operators is not clarified either.

\[a; b | c | d \] encounters both the precedence and the associativity issue.

(b) \([\star]\) Devise an alternative grammar that is unambiguous, order of operations should be such that

\[a; b; c \ast | a; d | e \]

is parsed with the grouping indicated by the parentheses in:

\[(a; (b; (c\ast))) | ((a; d) | e) \]

Solution:

<table>
<thead>
<tr>
<th>c Char</th>
<th>a RAtom</th>
<th>b RSeq</th>
<th>a RSeq</th>
<th>b RChoice</th>
<th>a RAtom</th>
<th>a RChoice</th>
</tr>
</thead>
<tbody>
<tr>
<td>c RAtom</td>
<td>a; b RSeq</td>
<td>a \ast RAtom</td>
<td>(a) RAtom</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Key Combinations: Consider the language used to document key combinations:

\[x \in \{a, b, \ldots, \text{Shift}\} \]

\[\left[K K K \right] \text{Key} \]

\[c_1 K c_2 K \text{Hold} \]

\[c_1 K c_2 K \text{Then} \]

\[c K \text{Paren} \]

For example \([\text{Ctrl} + \text{Shift} + \text{Q}]\) is a string in this language.

(a) \([\star]\) Find an example of ambiguity in this language.

Solution: The very next question offers an example:

\[\left[\right] \]

This can be parsed using \text{Hold} first or using \text{Then} first. It also shows an associativity issue with the \text{Then} rule.

(b) \([\star]\) Eliminate ambiguity such that

\[\left[\right] \]

is parsed with this grouping:

\[(\left[\right] ((\left[\right] + \left[\right])((\left[\right] \left[\right]))) \]

and such that

\[\text{Ctrl} + \text{Shift} + \text{C} + \text{Q} \]

is parsed with the following grouping:

\[(\text{Ctrl} + \text{Shift} + \text{C}) + \text{Q} \]

Solution:

\[x \in \{a, b, \ldots, \text{Shift}\} \]

\[\left[K K A \right] \text{Key} \]

\[c_1 K H c_2 K A \text{Hold} \]

\[c_1 K H c_2 K T \text{Then} \]

\[c K \text{Paren} \]

\[a K A \]

\[a K H \]

\[a K T \]