1. Safety and Liveness Properties
 (a) [⋆] For each of the following properties, identify if it is a safety or a liveness property.
 i. When I come home, there must be beer in the fridge.
 ii. When I come home, I’ll drop onto the couch and drink a beer.
 iii. I’ll be home later.
 iv. When process p has executed line 5, then process q must execute line 17 again.
 v. When process p has executed line 5, then process q cannot execute line 17 again.
 vi. Process q cannot execute line 17 again unless process p has executed line 5.
 vii. Process p has to execute line 5 before q can execute line 17 again.
 (b) [⋆⋆⋆⋆] By considering a property as a set of behaviours (infinite sequences of states),
 show that if the state space Σ has at least two states, then any property can be expressed
 as the intersection of two liveness properties.
 Hint: It may be helpful to know that the union of a liveness property and any other prop-
 erty is also a liveness property (this result follows from the fact that liveness properties
 are dense sets).

2. Type Safety: Consider this very simple language with function application and two built-in
 functions:

 $$e ::= (\text{App } e_1 e_2) \\
 \mid S \\
 \mid K$$

 The dynamic semantics evaluate the left hand side of applications as much as possible:

 $$(e_1 \mapsto e_1')$$

 $$(e_1 e_2 \mapsto e_1' e_2)$$

 The K function takes two arguments and returns the first one.

 $$(\text{App } (\text{App } K x) y) \mapsto x$$

 The S function takes three arguments, applies the first argument to the third, and applies the
 result of that to the second argument applied to the third. More clearly:

 $$(\text{App } (\text{App } S x) y) z \mapsto (\text{App } (\text{App } x z) (\text{App } y z))$$

 (a) [⋆⋆] Define a set of typing rules for this language, where the set of types is described by:

 $$\tau ::= \tau_1 \rightarrow \tau_2 \\
 \mid \iota$$

 Note that \rightarrow is right-associative, so $\tau_1 \rightarrow \tau_2 \rightarrow \tau_3$ means $\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3)$.

 1
In order to prove that your typing rules are type-safe, we must prove progress and preservation. For progress, we will define the set of final states as all states that have no successor:

\[F = \{ s \mid \nexists s'. s \rightarrow s' \} \]

This trivially satisfies progress, as progress states that all well-typed states either have a successor state or are final states.

Preservation, however, requires a nontrivial proof. Prove preservation for your typing rules with respect to the dynamic semantics of this language.

3. Haskell Types: Determine a MinHS type that is isomorphic to the following Haskell type declarations:

(a) \[\text{data MaybeInt = Just Int | Nothing} \]

(b) \[\text{data Nat = Zero | Suc Nat} \]

(c) \[\text{data IntTree = Tree Int IntTree IntTree | Leaf Int} \]

4. Inhabitation: Do the following MinHS types contain any (finite) values? If not, explain why. If so, give an example value.

(a) \[\text{rec t. Int + t} \]

(b) \[\text{rec t. Int \times t} \]

(c) \[\text{(rec t. Int \times t) + Bool} \]

5. Encodings: For each of the following sets, give a MinHS type that corresponds to it. Justify why your MinHS type is equivalent to the set, for example by providing a bijective function that, given an element of that set, gives the corresponding MinHS value of the corresponding type.

(a) \[\text{The natural number set } \mathbb{N}. \]

(b) \[\text{The set of integers } \mathbb{Z}. \]

(c) \[\text{The set of rational numbers } \mathbb{Q}. \]

(d) \[\text{The set of (computable) real numbers } \mathbb{R}_{\text{TM}}. \text{ It may be useful to assume a lazy semantics.} \]

6. Curry-Howard: Give a term in typed \(\lambda\)-calculus that is a proof of the following propositions. If there is no such term, explain why.

(a) \[A \Rightarrow A \lor B \]

(b) \[A \land B \Rightarrow A \]

(c) \[P \lor P \Rightarrow P \]

\[\text{Hint: Recall that } A \leftrightarrow B \text{ is shorthand for } A \Rightarrow B \land B \Rightarrow A. \]

(d) \[(A \land B \Rightarrow C) \leftrightarrow (A \Rightarrow B \Rightarrow C) \]

(e) \[P \lor (Q \land R) \Rightarrow (P \lor Q) \land (P \lor R) \]

(f) \[P \Rightarrow \neg(P) \]

\[\text{Hint: Recall that } \neg A \text{ is shorthand for } A \Rightarrow \bot. \]

(g) \[\neg(P) \Rightarrow P \]

(h) \[\neg(\neg(P)) \Rightarrow \neg P \]

(i) \[(P \lor \neg P) \Rightarrow \neg(\neg(P)) \Rightarrow P \]