
An Introduction to the GNU Assembler

The GNU Assembler, part of the GNU Tools software suite, is the assembler used in
the Digital Systems Laboratory to convert ARM assembly language source code into
binary object files.  This assembler is extensively documented in the GNU Assembler
Manual (which can be found on your CD-ROM in the gnutools/doc directory).  This
Introduction is a summary of that manual, specifically for the Laboratory.

Example and Template Files

The examples directory and its subdirectories on your CD-ROM contain many exam-
ples of assembly language programs that you can study.  And you are encouraged to
do so!  Please see the end of this document for more details.

One of the subdirectories in examples is templates.  You are strongly encouraged to
use the files provided there as a starting point in writing your computer programs.
In particular, the file template.s should be used for all of your ARM assembly lan-
guage programming.  This file, stripped of most of its comments, appears below:

        .text                     ; Executable code follows

_start: .global _start            ; "_start" is required by the linker
        .global main              ; "main" is our main program

        b       main              ; Start running the main program

main:                             ; Entry to the function "main"

; Insert your code here

        mov     pc,lr             ; Return to the caller

        .end

Invoking the Assembler

You can assemble the contents of any ARM assembly language source file by exe-
cuting the arm-elf-as program.  This can be invoked as:

arm-elf-as -marm7tdmi --gdwarf2 -o filename.o filename.s

Naturally, replace filename with whatever is appropriate for your project.  The
command-line option -marm7tdmi instructs the GNU Assembler that your target CPU
is the ARM7TDMI (ARMv4T architecture).  The option --gdwarf2 requests the as-
sembler to include information in the output file that is helpful for debugging—it
does not, incidentally, alter your program in any way.  Chapters 1 and 2, as well as
section 8.4, of the GNU Assembler Reference list other command line options.

For larger projects, you should modularise your code into multiple source files.  Each
source file (which has the extension .s) is then assembled using a command line
similar to the one shown.

Once you have assembled all of your source files into binary object files (with the
extension .o), you use the GNU Linker to create the final executable (extension .elf).
This is done by executing:

arm-elf-ld -o filename.elf filename.o

Once again, replace filename with whatever is appropriate for your project.  If you
are using multiple source files (and hence multiple object files), replace filename.o
with a list of all object files in your project.



– 2 –

Typing these commands again and again becomes rather tedious (even though the
Unix shell allows you to use the Up Arrow key to retrieve previous command lines).
For this reason, a template Makefile has been supplied that you can modify to suit
your own purposes (it can be found as examples/templates/Makefile.template-asm on
the CD-ROM).  Once you have modified this file (and renamed it to Makefile), all you
need to do to recreate the executable is type:

make

Assembly Language Syntax

The GNU Assembler is actually an assembler that can target many different CPU
architectures, not just the ARM.  For this reason, its syntax is slightly different from
other ARM assemblers; the GNU Assembler uses the same syntax for all of the 45-
odd CPU architectures that it supports.

Assembly language source files consist of a sequence of statements, one per line.
Each statement has the following format, each part of which is optional:

label:  instruction    ; comment

A label allows you to identify the location of the program counter (ie, its address) at
that point in the program.  This label can then be used, for example, as a target for
branch instructions or for load and store instructions.  A label can be any valid sym-
bol, followed by a colon “:”.  A valid symbol, in turn, is one that only uses the alpha-
betic characters A to Z and a to z (case does matter, ie, is significant), the digits 0 to
9, as well as “_”, “.” and “$”.  Note, however, that you cannot start a symbol with a
digit.  (For more information, please see sections 3.4 and 5.3 of the GNU Assembler
Reference).

A comment is anything that follows a semicolon “;”.1  Everything after a semicolon—
except when it appears in a string—is ignored to the end of that line.  C-style com-
ments (using “/*” and “*/”) are also allowed.  You can also use “@” instead of “;”.

The instruction field is the real meat of your program: it is any valid ARM assembly
language instruction that you care to use.  It also includes the so-called pseudo-op-
erations or assembler directives: “instructions” that tell the assembler itself to do
something.  These directives are discussed in greater detail below.

Assembler Directives

All assembler directives have names that begin with a full-stop “.”.  These are dis-
cussed in detail in Chapter 7 of the GNU Assembler Reference; the list of directives
presented here (in alphabetical order) are the more useful ones that you may need to
use in your assembly language programs.

.align

Insert from zero to three bytes of 0x00’s so that the next location will be on a 4-byte
(word) boundary.  Remember, in particularly, that the ARM microcontroller must
always access words (32-bit quantities) on a word boundary.  As an example, the
following three lines will insert eight bytes into the object file output, assuming that
the first line is already on a word boundary:

.byte   0x55        ; inserts the byte 0x55

.align              ; inserts three alignment bytes: 0x00 0x00 0x00

.word   0xAA55EE11  ; inserts the bytes 0x11 0xEE 0x55 0xAA (LSB order)

                                                
1 At least when targeting the ARM microcontroller, although this so-called comment character
may be different for other architectures.



– 3 –

By the way, please note that the 0x prefix indicates the number is in hexadecimal.
See the section on Expressions, later in this document, for more details.

This assembler directive has optional arguments that are not documented here; if
you need to use them, you are encouraged to use the .balign directive instead.  See
section 7.3 of the GNU Assembler Reference for more information.

.ascii "string" …

Insert the string literal into the object file exactly as specified, with no trailing NUL
character.  More than one string may be specified if they are separated by commas.
As an example, the following line inserts three bytes into the object file output:

.ascii  "JNZ"          ; inserts the bytes 0x4A 0x4E 0x5A

.asciz "string" …

Insert the string literal into the object file, followed by a NUL character (a 0x00 byte).
As with .ascii, more than one string may be specified if separated by commas.  As an
example, the following line inserts four bytes (not three) into the object file output:

.asciz  "JNZ"          ; inserts the bytes 0x4A 0x4E 0x5A 0x00

See also the .ascii directive for one that does not insert the terminating NUL
character.

.byte expression …

Insert the (8-bit) byte value of the expression into the object file.  More than one
expression may appear, if separated by commas.  As an example, the following lines
insert 5 bytes into the object file output:

.byte   64, 'A'           ; inserts the bytes 0x40 0x41

.byte   0x42              ; inserts the byte 0x42

.byte   0b1000011, 0104   ; inserts the bytes 0x43 0x44

Note that numbers starting with 0x or 0X are in hexadecimal, numbers starting with
0b or 0B are in binary, and numbers starting with 0 (a leading zero) are in octal.  See
the section on Expressions, later in this document, for more information.

See also the .hword and .word assembler directives.

.data

Switch the destination of following statements into the data section of the final
executable.  All executable programs have at least two sections called .text and .data.
Directives having those names allow you to switch back and forth between the two
sections.2

Technically speaking, only executable code is meant to appear in a .text section
(although read-only constants are fine as well) and only read/write data is meant to
appear in a .data section; this, however, is not enforced by the GNU Assembler.
Chapter 4 of the GNU Assembler Reference deals with this topic in greater depth.

.end

Mark the end of this source code file; everything after this directive is ignored by the
assembler.  Quite optional but highly recommended.

                                                
2 You might find the following analogy helpful…  Imagine that the executable file is a factory
containing at least two output bins.  Bytes (the goods being produced) come down a single
conveyer belt and are dropped into a particular bin (a section).  The .text and .data directives,
then, are like workers that move the end of the conveyer belt back and forth between the two
bins labelled .text and .data.



– 4 –

.equ symbol, expression

Set the value of symbol to expression.  This assembler directive can also be speci-
fied as .set or as “=”.  The following three lines are exactly identical, and set the
value of adams to 42:

        .equ    adams, (5 * 8) + 2
        .set    adams, 0x2A
adams   =       0b00101010

.extern symbol

Specify that symbol is defined in some other source code file (ie, module).  This
directive is optional as the assembler treats any symbols that are undefined as
external.  It is, nevertheless, recommended as part of documenting a source code
file.

.global symbol

Specify that symbol is to be made globally visible to all other modules (source code
files) that are part of the executable, and visible to the GNU Linker.  The symbol
_start, which is required by the GNU Linker to specify the first instruction to be
executed in a program, must always be a global one (and only present in one module,
of course).

.hword expression …

.2byte expression …

Insert the (16-bit) half-word value of the expression into the object file.  More than
one expression may appear, if separated by commas.  The directive .2byte can be
used as a synonym.  As an example, the following lines insert 8 bytes into the object
file output:

.hword  0xAA55, 12345   ; inserts the bytes 0x55 0xAA 0x39 0x30

.2byte  0x55AA, -1      ; inserts the bytes 0xAA 0x55 0xFF 0xFF
                        ; Least Significant Byte (LSB) ordering assumed

Remember that the ARM microcontroller must access all half-word quantities on 16-
bit boundaries.  In other words, it cannot access a half-word memory location if that
location is at an odd address.  See the .align directive for a solution.

See also the .byte and .word assembler directives.

.include "filename"

Insert the contents of filename into the current source file, as if that file had been
typed into the current file directly.  This is exactly the same as C’s use of #include,
and is for the same reason: it allows you to include header files full of various defini-
tions.  By the way, beware of having .end in the included file: the GNU Assembler will
stop reading everything after that directive!

.ltorg

Insert the literal pool of constants at this point in the program.  The literal pool is
used by the ldr = and adrl assembly language pseudo-instructions and is specific
to the ARM.  Using this assembler directive is almost always optional, as the GNU
Assembler is smart enough to figure out when and where to put any literal pool.
However, there are situations when it is very useful to include this directive, such as
when you need absolute control over where the assembler places your code.



– 5 –

.set symbol, expression

This is a synonym for the .equ assembler directive; it is a personal preference as to
which you use (but be consistent!).

.skip expression

Skip expression bytes in the object file output.  The bytes so skipped should be
treated as unpredictable in value, although they are often initialised to zero.  This
directive is useful for declaring uninitialised variables of a certain size.  As an exam-
ple, the following three lines declare three variables, two that are pre-initialised, one
(buffer) that is not:

head_ptr:  .word  0    ; Head pointer to within buffer (initially zero)
tail_ptr:  .word  0    ; Tail pointer to within buffer (initially zero)
buffer:    .skip  512  ; Buffer of 512 bytes, uninitialised

See also the .ascii, .asciz, .byte, .hword and .word directives for initialised storage.

.text

Switch the destination of following statements into the text section of the final
executable.  This is the section into which assembly language instructions should be
placed.  See the .data directive for a somewhat longer explanation.

.word expression …

.4byte expression …

Insert the (32-bit) word value of the expression into the object file.  More than one
expression may appear, if separated by commas.  The directive .4byte can be used as
a synonym.  As an example, the following lines insert 8 bytes into the object file
output:

.word   0xDEADBEEF  ; inserts the bytes 0xEF 0xBE 0xAD 0xDE

.4byte  -42         ; inserts the bytes 0xD6 0xFF 0xFF 0xFF
                    ; Least Significant Byte (LSB) ordering assumed

Remember that the ARM microcontroller must access all word quantities on 32-bit
boundaries.  In other words, it cannot access a word memory location if the lowest
two bits of that address are non-zero.  See the .align directive for a solution.

See also the .byte and .hword assembler directives.  Those coming from a back-
ground in other processors need to remember that, in ARM nomenclature, a word is
a 32-bit quantity, not a 16-bit one.

Expressions

Many ARM assembly language statements, as well as assembler directives, require an
integer number of some sort as an operand.  For example, “mov r0,#1” requires the
number “1”.  An expression may appear any place a number is expected.

At the most basic level, an expression can be a simple integer number.  This number
can be expressed in decimal (with the usual notation), in hexadecimal (with a 0x or
0X prefix), in octal (with a leading zero) or in binary (with a 0b or 0B prefix).  It can
also be expressed as a character constant, surrounded or preceded by single quotes.
Thus, the following six lines all load register R0 with the same value, 74:

mov  r0,#74         ; decimal number 74
mov  r0,#0x4A       ; hexadecimal number 0x4A (0X4A and 0x4a are also OK)
mov  r0,#0112       ; octal number 0112
mov  r0,#0b1001010  ; binary number 0b1001010 (0B1001010 is also OK)
mov  r0,#'J'        ; character constant "J" (preferred syntax)
mov  r0,#'J         ; character constant "J" (alternative syntax)



– 6 –

Of course, a good programmer will define a symbol with the appropriate value and
use that instead:

.set letter_J, 'J'    ; This is a contrived example!
mov  r0, #letter_J

Character constants can also contain certain backslash escape sequences, similar to
the C programming language.  See section 3.6.1 of the GNU Assembler Reference for
more details.

Apart from simple integer numbers, expressions can also look like standard mathe-
matical and logical expressions expressed in the C language.  These are described in
detail in Chapter 6 of the GNU Assembler Reference.  Some examples are:

.set  ROM_size,  128 * 1024          ; 131072 bytes (128KB)

.set  start_ROM, 0xE0000000

.set  end_ROM,   start_ROM + ROMsize ; 0xE0020000

.set  bm1,       0b11001101          ; Binary bit-mask (hex 0xCD)

.set  val1, -2 * 4 + (45 / (5 << 2)) ; -6 (in two's complement)

.set  val2, ROM_size >> 10           ; 128 (131072 shifted right by 10)

.set  val3, bm1 | 0b11110000         ; bm1 OR 0b11110000 = 0b11111101

Expressions can, of course, contain previously-defined labels, as illustrated above.
Such expressions can yield absolute values or relative values.  Absolute values don’t
depend on their position in the final executable (ie, they are position-independent);
they are a simple numeric constant, such as those in the examples above.  Relative
values, on the other hand, are relative to some address, such as the start of the .data
section.  These values are only fixed into place (ie, assigned a value) by the linker
when the final executable is created, not by the assembler.

Relative values are mainly used for offset calculations, and can only use the “+” and
“-” operators.  For example:

    .text

code_start:
    XXX           ; Many assembly language instructions...
code_end:

    .set  instr_size,  4    ; instructions are all 4 bytes long on ARM
    .set  code_length, code_end - code_start
    .set  first_instr, code_start
    .set  instr_11th,  code_start + 10 * instr_size
    .set  instr_10th,  instr_11th - instr_size

The symbol code_length is set to an absolute number of bytes (the difference
between code_end and code_start).  The other symbols, first_instr,
instr_11th and instr_10th, are all relative to the start of the .text section: their
exact value is only set when the final executable is created.

In general, the following rules apply to relative expressions:

relative + absolute  relative
absolute + relative  relative
relative – absolute  relative
relative – relative  absolute

All other expressions involving relative values are not allowed (except, of course, for
the simple case of a symbol by itself).  Note also that relative symbols must be in the
same section: you cannot find the difference between a label in the .text section and
one in the .data section, for example.

You may find more information about relative expressions, if you need it, in sec-
tion 4.1 of the GNU Assembler Reference.



– 7 –

Example Files

As already mentioned, the examples directory and its subdirectories on your CD-
ROM contain many examples of assembly language programs.  These example files
illustrate various aspects of the GNU Assembler for the ARM microcontroller.  You
are encouraged to study these examples—at the very least, you should quickly look
through them!

In particular, the examples/intro directory contains the following example files; these
files should be studied in the order presented:

simple.s A simple ARM assembly language program, with which to start
subr.s Simple subroutines (function calls)
values.s Load constant values into registers, with ldr =
pseudo.s More information about pseudo-instructions for the ARM
jumptbl.s Multi-way branches and pointers to functions
wordcopy.s Copy an array of words, stored in the .data section
blockcopy.s Copy an array en-masse, with stack pointer initialisation
copy.s Copy a NUL-terminated string to a buffer (assembler module)
strcopy-a.s String copy using multiple source files, using copy.s
strcopy-c.c Mixing C and assembler for string copy, using copy.s

You can create the associated executable files by copying all files in that directory to
a temporary one, then use make:

mkdir –p ~/intro              # Create a directory to hold the files
cd /mnt/cdrom/examples/intro  # Assumes CD-ROM is mounted on /mnt/cdrom
cp * ~/intro                  # Copy the files
cd ~/intro                    # Change to that directory
chmod 644 *                   # Make the files read/writable
make all                      # Create the executables

You can use the simulator provided by either arm-elf-gdb or arm-elf-insight to
actually run the executable files; see An Introduction to the GNU Debugger for more
details.

More Information

You can find more information about the GNU Assembler in the GNU Assembler Ref-
erence, also called Using AS.  This 200-odd-page document is fairly comprehensive,
although not particularly user-friendly.3  It can be found in the gnutools/doc direc-
tory on your CD-ROM.

The definitive reference is the actual source code to the GNU Assembler.  You can
find this on the CD-ROM in the file gnutools/src/binutils-version.tar.gz for some ver-
sion number.  After unpacking this archive (and applying the appropriate patch file),
try browsing the source code files in the gas subdirectory.

                                                
3 If you think you can do better, you can always try!  That is one of the advantages of having a
program with free access to the source code…


	An Introduction to the GNU Assembler
	Example and Template Files
	Invoking the Assembler
	Assembly Language Syntax
	Assembler Directives
	.align
	.ascii "string" …
	.asciz "string" …
	.byte expression …
	.data
	.end
	.equ symbol, expression
	.extern symbol
	.global symbol
	.hword expression …�.2byte expression …
	.include "filename"
	.ltorg
	.set symbol, expression
	.skip expression
	.text
	.word expression …�.4byte expression …

	Expressions
	Example Files
	More Information


