COMP 3221

Microprocessors and Embedded Systems

Lecture 2 : C-Language Review - 1
http://www.cse.unsw.edu.au/~cs3221
July, 2003
Saeid Nooshabadi
Saeid@unsw.edu.au

COMP3221 lec02-C-language-I .1 Saeid Nooshabadi

Overview

°C Syntax

°Important Tidbits in C

°Pointers

°Dynamic Memory Allocation

°Arrays

°Strings

°Common Pointer Mistakes

°Operators

COMP3221 lec02-C-language-| .2

Saeid Nooshabadi

Review: What is Subject about?

Application (Netscape)

A Operating

System
Software [Assembler | (Windows XP)

| linstruction Set

Hardware |Processor|Memory|I/O system | Architecture

Datapath & Control

v
| Digital Design |

| transistors |

°Coordination of many levels of
abstraction

COMP3221 lec02-C-language-I .3 Saeid Nooshabadi

Review: Programming Levels of Representation

High Level Language
Program (e.g., C)

Machine Interpretation

Control Signal
Specification

COMP3221 lec02-C-language-| .4

temp = v[k];

v[k] =

v[k+1];

v[k+1] = temp;
Compiler Ildr rO, [r2, #0]
Assembly Language dr rl , [r2, #4]
Program (e.g. ARM)
str r1, [r2, #0]
A bl
b str r0, [r2, #4]
_ 1110 0101 1001 0010 0000 0000 0000 0000
Machine:‘Language 1110 0101 1001 0010 0000 0000 0000 0100
Program: (ARM) 1110 0101 1000 0010 0001 0000 0000 0000

1110 0101 1000 0010 0001 0000 0000 0100

ALUOP[0:3] <= InstReg[9:11] & MASK

Saeid Nooshabadi

Review: What will You learn in COMP 32217

°Learn big ideas in Microprocessors &
Interfacing

* 5 Classic components of a Computer

* Principle of abstraction, used to build systems
as layers

» Data can be anything (integers, floating point,
characters): a program determines what it is

» Stored program concept: instructions just data
* Principle of stack and stack frames
e Compilation v. interpretation thru system layers

* Principle of Locality, exploited via a memory
hierarchy (cache)

COMP3221 lec02-C-language-I .5 Saeid Nooshabadi

Review: 5 Classic Components of a Computer

Network/Bus

Processor

Processor 7//////%

. Input 7

2

Control Control

Memory Memory
Datapath Output / Output Datapath
A\ P

NN

[ALU || Registers |

COMP3221 lec02-C-language-I .6 Saeid Nooshabadi

Quick Survey

°How many of you have experience
with:

Java?
C++?
C?

°Important: You will not learn how to
code in Cin this one lecture! You'll
still need some sort of C reference for
this course.

COMP3221 lec02-C-language-I .7 Saeid Nooshabadi

Compilation (#1/3)

°C compilers take C and convert it into
an architecture specific machine code
(string of 1s and 0s).

*Unlike Java which converts to
architecture independent code.

* Unlike Haskell/Scheme environments
which interpret the code.
°But how is it architecture specific?

*You'll know the answer to this by the end
of next week.

COMP3221 lec02-C-language-I .8 Saeid Nooshabadi

Compilation (#2/3)

°Advantages of C-style compilation:

e Great run-time performance: generally
much faster than Haskell or Java for
comparable code (because it optimizes
for a given architecture)

* OK compilation time: enhancements in

compilation procedure (Makefiles)
allow only modified files to be

recompiled

COMP3221 lec02-C-language-I .9

Saeid Nooshabadi

Compilation (#3/3)

°Disadvantages of C-style compilation:

* All compiled files (including the
executable) are architecture specific,
depending on both the CPU type and the
operating system.

* Executable must be rebuilt on each new
system.

COMP3221 lec02-C-language-I .10 Saeid Nooshabadi

C Syntax

main is
called
by OS

Replaces current line by

4« contents of specified file;

#include <stdio.h>

int main (void)

(

“< > means look in system

e oo

area, user arca.

int k;

unsigned int exp = 1;

————— Declare before

use; each
)(*_Cgmpj.uzei_to_thejlﬁ_tiﬂ sequence of
for (k=0; k<31; k++) {

exp = exp * 2;

}

eturn O;

}

COMP3221 lec02-C-language-| .11

variable
declarations
must follow a
left brace.

gcc accepts “//” comments
but they aren’t legal C.

Saeid Nooshabadi

C Syntax: General

°Very similar to Java, but with a few minor but
important differences

° Header files (.h) contain function declarations, just
like in C++.

°.c files contain the actual code.
°main () is called by OS
°main can have arguments (more on this later):
int main (int argc, char *argv([])
°In no argement correct form is:
int main (void)
° Comment your code:
e only /* */ works

e /I doesn’t work in C
e gcc accepts //

COMP3221 lec02-C-language-I .12 Saeid Nooshabadi

C Syntax: Declarations

°All declarations must go at the
beginning of a C block, before
assigning any values.

°Examples of incorrect declarations:
int ¢ = 0;
c=c+ 1;
char d; /* error */
for (int i = 0; i < 10; i++)

COMP3221 lec02-C-language-I .13 Saeid Nooshabadi

C Syntax: Structs

°C uses structs instead of classes, but
they’'re very similar.
°Sample declaration:

struct alpha {
int a;
char b;

};
°To create an instance of this struct:
struct alpha instl;

°Read up on more struct specificsinaC
reference.

COMP3221 lec02-C-language-l .14 Saeid Nooshabadi

True or False?

°What evaluates to FALSE in C?
*0 (integer)
* NULL (pointer: more on this later)

°What evaluates to TRUE in C?
severything else...

°No such thing as a Boolean type in C.

COMP3221 lec02-C-language-I .15 Saeid Nooshabadi

Address v. Value (#1/2)

°Consider memory to be a single huge
array:

e Each cell of the array has an address
associated with it.

e Each cell also stores some value.

°Don’t confuse the address referring to
a memory location with the value
stored in that location.

COMP3221 lec02-C-language-| .16 Saeid Nooshabadi

Address vs variable (#2/2)

1 word = 4 Bytes = 32 bits
N

[ANEEN
80 24 a
84 65 b
Addresses .
88 32 C >Variables
92 90 d
pal

Variable Address
Variable Value

COMP3221 lec02-C-language-I .17 Saeid Nooshabadi

Pointers in C (#1/6)

°An address refers to a particular
memory location. In other words, it
points to a memory location.

°Pointer: High Level Language (in this
case C) way of representing a memory
address.

°More specifically, a C variable can
contain a pointer to something else. It
actually stores the memory address
that something else is stored at.

COMP3221 lec02-C-language-l .18 Saeid Nooshabadi

Address vs variable (#2/6)

1 word = 4 Bytes = 32 bits
N

(] N

80 24 a

84 65 b«

88 32 C

ariables
Addresses | o,) 90 d >’

Variable Address
Variable Value

104 84 pt/

COMP3221 lec02-C-language-I .19 Saeid Nooshabadi

Pointers in C (#3/6)

°Why use pointers?

80 24
* If we want to pass a huge 65
struct or array, it's easier to > truc #1
pass a pointer than the
whole thing. 90
* In general, pointers allow 96 45 a
cleaner, more compact = b
code.
11 c
°So what are the a8 d
drawbacks?
* Pointers are probably the .
single largest source of o
bugs in software, so be
careful anytime you deal

with them.

COMP3221 lec02-C-language-I .20 Saeid Nooshabadi

Struc #2

Struc #n

Pointers in C (#4/6)
°To declare a pointer, just

1 word = 4 Bytes
N

precede the variable name - ~
Examples: 84 5 b
int *a;
88 ? ptr
int b;
2 ? var
int *ptr, var, var2;
PoMters ? var2

°Warning: In the third
example above, the variabl
ptris a pointer to an
Integer, while var and var2 104
are actual integer variables.
The asterisk only applies to
one variable.

COMP3221 lec02-C-language-I .21 Saeid Nooshabadi

Pointers in C (#5/6)

°Mixing int and char 1 word = 4 Bytes
N

pointers - N
o sg.r” 7 a
Examples:
int *a; 84 ? b
*H -
char *b; 88 ? ptr

int *ptr, var;

Char *chptr, ch;
Pointers

2 ? var

/ chptr
100,10102, 1037\ .ch

int Size: 1 word = 4 Bytes = 32 bits 104
char Size: 1 Byte = 8 bits

COMP3221 lec02-C-language-| .22 \A Saeid Nooshabadi

Pointers in C (#6/6)

°Notice that a pointer can only point to
one type (int, char, a struct, etc.).

°An int* cannot point to a character,
or vice versa.

°Why not?

» Safety: Pointers are known to cause
problems to careless programmers, so
l[imit what a pointer can do.

COMP3221 lec02-C-language-| .23 Saeid Nooshabadi

Pointer Arithmetic (#1/4)

°Since a pointer is 80| “
just amemory g1| ©°
address, we can g2 | 32
add to it to
traverse an array. 83
°ptr+1 will return a gg
pointer to the
next array 86
element. 87
char a[8]; °
[J
[J

=

100 - 103 80 |[P+

COMP3221 lec02-C-language-| .24 Saeid Nooshabadi

Pointer Arithmetic (#2/4) Pointer Arithmetic (#3/4)
24 . 804 24
°What about array 80 °What if we have =
of integers (4 84 65 an array of large Struc #1
Byte size). 88 32 structs? 32
. . L 90
°ptr+1 will rehturn a 92 ﬁltr%i;?isty?agterf{) 45 a
pointer to the 96 doesn’t add 1 to g
next integer array 100 the memory 55 b
element as well. 104 address. but 1 o (Struc#2
108 rather adds the 8 q
size of an array
int a[8]; element. °
[4 [4
[4 o
[J
100-103 80 |pw= 2 Struc #n
100 - 103 | Plr |+ 1
Pointer Arithmetic (4/4) Questions
o
: . . . ?
°So what's valid pointer arithmetic? Whlch qne of the following are invalid-
« Add an integer to a pointer. — pointer + integer oK
« Subtract 2 pointers (in the same array). — Integer + pointer Not OK
« Compare pointers (<, >, etc.). — pointer + pointer Not OK
« Compare pointer to NULL (indicates that — pointer — integer OK
the pointer points to nothing). — integer — pointer Not OK
°Everything else is illegal since it — pointer — pointer oK
makes no sense: — compare pointer to pointer OK
«adding two pointers, multiplying B : :
pointers, etc. compare pointer to integer Not ok
— compare pointer to 0 oK

Pointer Usage

°Once a pointer is 04
declared:

* use & to return a pointer °
to an existing variable o
(the memory address of
the variable)

* use *to return the value 80) 84 ptr
pointed to by a pointer 8$ 5 var
variable

88 2
° Example:
P 92
int *ptr, var, var2;
96
var = 5,’ 100
ptr = &var; 104
108
var2 = *ptr;

COMP3221 lec02-C-language-I .29 Saeid Nooshabadi

Dynamic Memory Allocation (#1/4)

°After declaring a pointer:

int *ptr;
ptr doesn’t actually point to anything
yet. We can either:

*make it point to something that already
exists, or

e allocate room in memory for something
new that it will point to...

COMP3221 lec02-C-language-I .30 Saeid Nooshabadi

Dynamic Memory Allocation (#2/4)

°Pointing to something that already
exists:

int *ptr, var, var2;
var = 5;

ptr = &var;

var2 = *ptr;

°var and var2 have room implicitly
allocated for them.

COMP3221 lec02-C-language-| .31 Saeid Nooshabadi

Dynamic Memory Allocation (#3/4)

°To allocate room for something new to
point to, use malloc (with the help of a
typecast and sizeof):

ptr = (int *) malloc (sizeof(int));

°Now, ptr points to a space somewhere
In memory of size (sizeof (int)) in
bytes.

°(int *) simﬁly tells the compiler what

type (i nt in this case) will go into that
space (called a typecast).

COMP3221 lec02-C-language-I .32 Saeid Nooshabadi

Dynamic Memory Allocation (#4/4)

°Oncemalloc is called, the memory
location might contain anything, so
don’t use it until you’'ve set its value.

°After dynamically allocating space, we

must dynamically free it:
free (ptr);

°Use this command to clean up.

COMP3221 lec02-C-language-| .33

Saeid Nooshabadi

Arrays (#1/3)

°Declaration:
int ar[12];

declares a 12-element integer array.

°Accessing elements:

ar[num] ;

returns the numth element.

COMP3221 lec02-C-language-l .34 Saeid Nooshabadi

Arrays (#2/3)

°Key Concept: An 80
array variable is a 84
pointer to the first 88
element. 92

°Consequences:
ear is a pointer

car[0] is the same
as *ar

car[2] is the same
as * (ar+2)

96

* We can use pointer
arithmetic to access
arrays more
conveniently.

COMP3221 lec02-C-language-| .35

100 - 103

24

65

32

80

ar

Saeid Nooshabadi

Arrays (#3/3)

°Pitfall: An array in C does not know its
own length.

°Consequence: We can accidentally
access off the end of an array.

°Segmentation faults and bus errors:
Thes%e Iare VERY difficult to find, so be
careful.

COMP3221 lec02-C-language-I .36 Saeid Nooshabadi

Strings

. .. ‘h’
°A C String is just an 80 —
array of characters: 81| °©
char *str = “hello”; 82 !
°str points to the ‘h’ 83
84
°The next five elements 85
are:
‘e, ‘I','I, 'o’, and NULL
(\0)
°Key Detail: A C String is S

always terminated with

a NULL, which is why

they’re called null- 100 - 103 80 str
terminated strings.

COMP3221 lec02-C-language-I .37 Saeid Nooshabadi

Review: C memory allocation

Address < f |
00 ace for save
Stack P : .
sp —» procedure information
stack v
pointer y
Explicitly created space,
Heap e.g., malloc(); C pointers
global _ :
bointer | Static Variables declared
gp— once per program
0 Code | Program

COMP3221 lec02-C-language-| .38 Saeid Nooshabadi

Arguments to Functions

°Arguments can be:

e passed by value: Make a copy of the
original argument (doesn’t really affect
types such as integers).

e passed by reference: Pass a pointer, so
the called function makes modifications
to the original struct.

°Passing by reference can be
dangerous, so be careful.

COMP3221 lec02-C-language-I .39 Saeid Nooshabadi

Arguments to Functions: Example

int a =1, b=1 *alpha = &a, *beta = &b;

void point_less (int a, int b) {

a=0;
b=20;

}

void point full (int *a, int *b) {
*a = 0;

*b = 0;

point_less(a,b);

/* After calling point less, and b are\jnchanged *

point_full (alpha, beta) ;

/* After calling point full,a and b are

COMP3221 lec02-C-language-| .40 Saeid Nooshabadi

Common Pointer Mistakes (1/2)

Common Pointer Mistakes (2/2)

. 0 _ 0
°Declare and write: °Copy pointers v. values:
int *p; 4 int *ip, *iq, a = 100, b = 200; °
® . _ o _ . [
p = 10; / WRONG */ ' ip = &a; 1q/— &b; / :
L 2 *ip = *iq; /* what changed? * 88 it
°What address is in p? 80 P _ _ /% what ch T 80 />>/(//92 ;:)
» Answer: NULL; C defines 84 BT what changed: 84 —
that memory address 0 88 8845/ 00
(same as NULL) is not 92 92 R\ 200 b
valid to write to.
96 96
°Remember to malloc 100 100
first. 104 104
108 108
Important Logical Operators Important Shift Operators
°Logical AND (&&) and bitwise AND (&) °Logical AND (&&) and bitwise AND (&)
operators: operators:
char a=4, b=8, c;
c=a & b; Dec Binary char a=4, b=8, c; Dec Binary
c =a<< 2;
/* After this statement 2|4 0000 0100 >0 al4 0000 0100 >0
c =1*/ /* After this statement
b|8 0000 1000 >0 c =16*/ a<<2| 16 0001 0000
c=as&b b >> 3
T c = ;
/* After this statementa&&b e b |8 0000 1000 >0
c =0*/ /* After this statement
a& | 0 0000 0000 c =1*/ b>>3]| 1 0000 0001

°Similarly logical OR (]|) and bitwise OR ()
operators:

COMP3221 lec02-C-language-| .43 Saeid Nooshabadi

COMP3221 lec02-C-language-| .44 Saeid Nooshabadi

Things to Remember (#1/2)

°All declarations go at the beginning of
each function.

°Only 0 and NULL evaluate to FALSE.

°All data is in memory. Each memory
location has an address to use to refer
to it and a value stored in it.

°A pointer is a High Level Language
version of the address.

COMP3221 lec02-C-language-| .45 Saeid Nooshabadi

Things to Remember (#2/2)

°’Usemalloc and free to allow a
pointer to point to something not
already in a variable.

°An array name is just a pointer to the
first element.

°A string is just an array of chars.

COMP3221 lec02-C-language-| .46 Saeid Nooshabadi

