
COMP3221  lec02-C-language-I .1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 2 : C-Language Review - 1

http://www.cse.unsw.edu.au/~cs3221

July, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221  lec02-C-language-I .2 Saeid Nooshabadi

Overview

°C Syntax

° Important Tidbits in C

°Pointers

°Dynamic Memory Allocation

°Arrays

°Strings

°Common Pointer Mistakes

°Operators

COMP3221  lec02-C-language-I .3 Saeid Nooshabadi

Review: What is Subject about?

I/O systemProcessor

Compiler
Operating

System
(Windows XP)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
Architecture

°Coordination of many levels of 
abstraction

Datapath & Control 

transistors

MemoryHardware

Software Assembler

COMP 3221

COMP3221  lec02-C-language-I .4 Saeid Nooshabadi

Review: Programming Levels of Representation

High Level Language 
Program (e.g., C)

Assembly  Language 
Program (e.g. ARM)

Machine  Language 
Program (ARM)

Control Signal 
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

ldr  r0 , [r2, #0]
ldr  r1 , [r2, #4]
str  r1 , [r2, #0]
str  r0 , [r2, #4]

1110 0101 1001 0010 0000 0000 0000 0000 
1110 0101 1001 0010 0000 0000 0000 0100 
1110 0101 1000 0010 0001 0000 0000 0000 
1110 0101 1000 0010 0001 0000 0000 0100

°
°

ALUOP[0:3] <= InstReg[9:11] & MASK

COMP3221



COMP3221  lec02-C-language-I .5 Saeid Nooshabadi

Review: What will You learn in COMP 3221?

° Learn big ideas in Microprocessors & 
Interfacing

• 5 Classic components of a Computer

• Principle of abstraction, used to build systems 
as layers 

• Data can be anything (integers, floating point, 
characters): a program determines what it is

• Stored program concept: instructions just data

• Principle of stack and stack frames

• Compilation v. interpretation thru system layers 

• Principle of Locality, exploited via a memory 
hierarchy (cache)

COMP3221  lec02-C-language-I .6 Saeid Nooshabadi

Review: 5 Classic Components of a Computer

Control

Datapath

Memory

Processor
Input

Output

Control

Datapath

Memory

Processor
Input

Output

Network/Bus

ALU Registers

COMP3221  lec02-C-language-I .7 Saeid Nooshabadi

Quick Survey

°How many of you have experience 
with:

Java?

C++?

C?

° Important: You will not learn how to 
code in C in this one lecture!  You’ll 
still need some sort of C reference for 
this course.

COMP3221  lec02-C-language-I .8 Saeid Nooshabadi

Compilation (#1/3)

°C compilers take C and convert it into 
an architecture specific machine code 
(string of 1s and 0s).

• Unlike Java which converts to 
architecture independent code.

• Unlike Haskell/Scheme environments 
which interpret the code.

°But how is it architecture specific?
• You’ll know the answer to this by the end 
of next week.



COMP3221  lec02-C-language-I .9 Saeid Nooshabadi

Compilation (#2/3)

°Advantages of C-style compilation:
• Great run-time performance: generally 
much faster than Haskell or Java for 
comparable code (because it optimizes 
for a given architecture)

• OK compilation time: enhancements in 
compilation procedure (Makefiles) 
allow only modified files to be 
recompiled

COMP3221  lec02-C-language-I .10 Saeid Nooshabadi

Compilation (#3/3)

°Disadvantages of C-style compilation:
• All compiled files (including the 
executable) are architecture specific, 
depending on both the CPU type and the 
operating system.

• Executable must be rebuilt on each new 
system.

COMP3221  lec02-C-language-I .11 Saeid Nooshabadi

C Syntax

#include <stdio.h>
int main (void) {
unsigned int exp = 1;
int k;
/* Compute 2 to the 31st.*/
for (k=0; k<31; k++) {
exp = exp * 2;
}
...
return 0;
}

main is 
called
by OS

Replaces current line by 
contents of specified file;   
“< >” means look in system 
area, “ " " ” user area.

Declare before 
use; each 
sequence of 
variable 
declarations 
must follow a 
left brace.

gcc accepts “//” comments 
but they aren’t legal C.

COMP3221  lec02-C-language-I .12 Saeid Nooshabadi

C Syntax: General
° Very similar to Java, but with a few minor but 

important differences

° Header files (.h) contain function declarations, just 
like in C++.

° .c files contain the actual code.

°main () is called by OS

°main can have arguments (more on this later): 

int main (int argc, char *argv[])
° In no argement correct form is:

int main (void)
° Comment your code:

• only /* */ works
• // doesn’t work in C
• gcc accepts //



COMP3221  lec02-C-language-I .13 Saeid Nooshabadi

C Syntax: Declarations

°All declarations must go at the 
beginning of a C block, before 
assigning any values.

°Examples of incorrect declarations:
int c = 0;
c = c + 1;                  
char d;     /* error */
for (int i = 0; i < 10; i++)

COMP3221  lec02-C-language-I .14 Saeid Nooshabadi

C Syntax: Structs

°C uses structs instead of classes, but 
they’re very similar.

°Sample declaration:
struct alpha {

int a;
char b;

};
°To create an instance of this struct:

struct alpha inst1;
°Read up on more struct specifics in a C 
reference.

COMP3221  lec02-C-language-I .15 Saeid Nooshabadi

True or False?

°What evaluates to FALSE in C?
• 0 (integer)

• NULL (pointer: more on this later)

°What evaluates to TRUE in C?
• everything else…

°No such thing as a Boolean type in C.

COMP3221  lec02-C-language-I .16 Saeid Nooshabadi

Address v. Value (#1/2)

°Consider memory to be a single huge 
array:

• Each cell of the array has an address 
associated with it.

• Each cell also stores some value.

°Don’t confuse the address referring to 
a memory location with the value 
stored in that location.



COMP3221  lec02-C-language-I .17 Saeid Nooshabadi

Address vs variable (#2/2)

24

65

32

90

80

84

88

92

Addresses

a

b

c

d

Variables

Variable Address

Variable Value

1 word = 4 Bytes = 32 bits

COMP3221  lec02-C-language-I .18 Saeid Nooshabadi

Pointers in C (#1/6)

°An address refers to a particular 
memory location.  In other words, it 
points to a memory location.

°Pointer: High Level Language (in this 
case C) way of representing a memory 
address.

°More specifically, a C variable can 
contain a pointer to something else.  It 
actually stores the memory address 
that something else is stored at.

COMP3221  lec02-C-language-I .19 Saeid Nooshabadi

Address vs variable (#2/6)

24 a80

b84 65

88 32

90

c

d92Addresses variables

Variable Address

Variable Value
84 ptr104

1 word = 4 Bytes = 32 bits

COMP3221  lec02-C-language-I .20 Saeid Nooshabadi

Pointers in C (#3/6)
° Why use pointers?

• If we want to pass a huge 
struct or array, it’s easier to 
pass a pointer than the 
whole thing.

• In general, pointers allow 
cleaner, more compact 
code.

° So what are the 
drawbacks?

• Pointers are probably the 
single largest source of 
bugs in software, so be 
careful anytime you deal 
with them.

24 a

b65

32

90

c
d

Struc #1

45 a
b55

11

88

c
d

Struc #2

Struc #n

80

96



COMP3221  lec02-C-language-I .21 Saeid Nooshabadi

Pointers in C (#4/6)
° To declare a pointer, just 

precede the variable name 
with a *

° Examples:
int *a;
int  b;
int *ptr, var, var2;

° Warning: In the third 
example above, the variable ptr is a pointer to an 
integer, while var and var2
are actual integer variables.  
The asterisk only applies to 
one variable.

a80

b84

88 ptr

var92

var2

104

?

?

?

?

?Pointers

1 word = 4 Bytes

COMP3221  lec02-C-language-I .22 Saeid Nooshabadi

Pointers in C (#5/6)
° Mixing int and char

pointers

° Examples:
int *a;
char *b;
int *ptr, var;
Char *chptr, ch;

a80

b84

88 ptr

var92

chptr

104

?

?

?

?

?
Pointers

1 word = 4 Bytes

ch100,101,102, 103 ?

int Size: 1 word = 4 Bytes = 32 bits
char Size: 1 Byte = 8 bits 

COMP3221  lec02-C-language-I .23 Saeid Nooshabadi

Pointers in C (#6/6)

°Notice that a pointer can only point to 
one type (int, char, a struct, etc.).

°An int* cannot point to a character, 
or vice versa.

°Why not?
• Safety: Pointers are known to cause 
problems to careless programmers, so 
limit what a pointer can do.

COMP3221  lec02-C-language-I .24 Saeid Nooshabadi

Pointer Arithmetic (#1/4)

° Since a pointer is 
just a memory 
address, we can 
add to it to 
traverse an array.

° ptr+1 will return a 
pointer to the 
next array 
element.

24 a[0] 

a[1]65

32

90

a[2]
a[3]

45 a[4]
a[5]55

11

88
a[6]
a[7]

80

81
82
83

84
85
86
87

char a[8];

100 - 103 ptr80 Ptr + 1Ptr + 2



COMP3221  lec02-C-language-I .25 Saeid Nooshabadi

Pointer Arithmetic (#2/4)

° What about array 
of integers (4 
Byte size).

° ptr+1 will return a 
pointer to the 
next integer array 
element as well.

24

a[1]65

32

90

a[2]
a[3]

45 a[4]
a[5]55

11

88

a[6]
a[7]

80

84
88
92

96
100 
104
108

100 - 103 ptr80 Ptr + 1Ptr + 2

int a[8];

a[0] 

COMP3221  lec02-C-language-I .26 Saeid Nooshabadi

Pointer Arithmetic (#3/4)

° What if we have 
an array of large 
structs?

• C takes care of it: 
In reality, ptr+1 
doesn’t add 1 to 
the memory 
address, but 
rather adds the 
size of an array 
element.

24 a 

b65

32

90

c
d

Struc #1

45 a
b55

11

88

c
d

Struc #2

Struc #n

80

96

ptrPtr + 1100 - 103

COMP3221  lec02-C-language-I .27 Saeid Nooshabadi

Pointer Arithmetic (4/4)

°So what’s valid pointer arithmetic?
• Add an integer to a pointer.

• Subtract 2 pointers (in the same array).

• Compare pointers (<, >, etc.).

• Compare pointer to NULL (indicates that 
the pointer points to nothing).

°Everything else is illegal since it 
makes no sense:

• adding two pointers, multiplying 
pointers, etc.

COMP3221  lec02-C-language-I .28 Saeid Nooshabadi

Questions

°Which one of the following are invalid?

– pointer + integer

– integer + pointer

– pointer + pointer

– pointer – integer

– integer – pointer

– pointer – pointer

– compare pointer to pointer

– compare pointer to integer

– compare pointer to 0

OK

Not OK

Not OK

OK

Not OK

OK

OK

Not OK

OK



COMP3221  lec02-C-language-I .29 Saeid Nooshabadi

Pointer Usage

° Once a pointer is 
declared:

• use & to return a pointer 
to an existing variable 
(the memory address of 
the variable)

• use * to return the value 
pointed to by a pointer 
variable

° Example:
int *ptr, var, var2;
var = 5;
ptr = &var;
var2 = *ptr;

80

84
88
92

96
100 
104
108

0

var?

? var2

? ptr80

84
88
92

96
100 
104
108

0

var5

? var2

? ptr80

84
88
92

96
100 
104
108

0

var5

? var2

84 ptr80

84
88
92

96
100 
104
108

0

var5

5 var2

84 ptr

COMP3221  lec02-C-language-I .30 Saeid Nooshabadi

Dynamic Memory Allocation (#1/4)

°After declaring a pointer:
int *ptr;

ptr doesn’t actually point to anything 
yet.  We can either:

• make it point to something that already 
exists, or

• allocate room in memory for something 
new that it will point to…

COMP3221  lec02-C-language-I .31 Saeid Nooshabadi

Dynamic Memory Allocation (#2/4)

°Pointing to something that already 
exists:

int *ptr, var, var2;
var = 5;
ptr = &var;
var2 = *ptr;

°var and var2 have room implicitly 
allocated for them.

COMP3221  lec02-C-language-I .32 Saeid Nooshabadi

Dynamic Memory Allocation (#3/4)

°To allocate room for something new to 
point to, use malloc (with the help of a 
typecast and sizeof):
ptr = (int *) malloc (sizeof(int));

°Now, ptr points to a space somewhere 
in memory of size (sizeof(int)) in 
bytes.

°(int *) simply tells the compiler what 
type (int in this case) will go into that 
space (called a typecast).



COMP3221  lec02-C-language-I .33 Saeid Nooshabadi

Dynamic Memory Allocation (#4/4)

°Once malloc is called, the memory 
location might contain anything, so 
don’t use it until you’ve set its value.

°After dynamically allocating space, we 
must dynamically free it:
free (ptr);

°Use this command to clean up.

COMP3221  lec02-C-language-I .34 Saeid Nooshabadi

Arrays (#1/3)

°Declaration:
int ar[12];

declares a 12-element integer array.

°Accessing elements:
ar[num];

returns the numth element.

COMP3221  lec02-C-language-I .35 Saeid Nooshabadi

Arrays (#2/3)

° Key Concept: An 
array variable is a 
pointer to the first 
element.

° Consequences:
•ar is a pointer

•ar[0] is the same 
as *ar

•ar[2] is the same 
as *(ar+2)

• We can use pointer 
arithmetic to access 
arrays more 
conveniently.

24

ar[1]65

32

90

ar[2]
ar[3]

45 ar[4]
ar[5]55

11

88

ar[6]
ar[7]

80

84
88
92

96
100 
104
108

100 - 103 ar80

ar[0] 

COMP3221  lec02-C-language-I .36 Saeid Nooshabadi

Arrays (#3/3)

°Pitfall: An array in C does not know its 
own length.

°Consequence: We can accidentally 
access off the end of an array.

°Segmentation faults and bus errors: 
These are VERY difficult to find, so be 
careful.



COMP3221  lec02-C-language-I .37 Saeid Nooshabadi

Strings

° A C String is just an 
array of characters:
char *str = “hello”;

°str points to the ‘h’

° The next five elements 
are:

‘e’, ‘l’, ‘l’, ‘o’, and NULL 
(‘\0’)

° Key Detail: A C String is 
always terminated with 
a NULL, which is why 
they’re called null-
terminated strings.  

‘h’ str[0] 

str[1]‘e’

‘l’

‘l’

str[2]
str[3]

‘o’ str[4]
str[5]0

80

81
82
83

84
85

100 - 103 str80

COMP3221  lec02-C-language-I .38 Saeid Nooshabadi

Review: C memory allocation

0

∞
Address

Code Program

Static Variables declared
once per program

Heap
Explicitly created space, 
e.g., malloc(); C pointers

Stack
Space for saved 
procedure informationsp

stack
pointer

global
pointer

gp

COMP3221  lec02-C-language-I .39 Saeid Nooshabadi

Arguments to Functions

°Arguments can be:
• passed by value: Make a copy of the 
original argument (doesn’t really affect 
types such as integers).

• passed by reference: Pass a pointer, so 
the called function makes modifications 
to the original struct.

°Passing by reference can be 
dangerous, so be careful.

COMP3221  lec02-C-language-I .40 Saeid Nooshabadi

Arguments to Functions: Example
int a =1, b=1 *alpha = &a, *beta = &b;
void point_less (int a, int b) {
a = 0;
b = 0;

}
void point_full (int *a, int *b) {
*a = 0;
*b = 0;

} point_less(a,b);
/* After calling point_less, and b are unchanged */
point_full(alpha,beta);
/* After calling point_full,a and b are changed */

1

1

80

84

80

84
88
92

96

b
alpha
beta

a

1

1

0

0

0

0

80

84



COMP3221  lec02-C-language-I .41 Saeid Nooshabadi

Common Pointer Mistakes (1/2)

° Declare and write:

int *p; 
*p = 10; /* WRONG */

° What address is in p?
• Answer: NULL; C defines 

that memory address 0 
(same as NULL) is not 
valid to write to.

° Remember to malloc
first.

80

84
88
92

96
100 
104
108

0

?               p

COMP3221  lec02-C-language-I .42 Saeid Nooshabadi

Common Pointer Mistakes (2/2)

° Copy pointers v. values:
int *ip, *iq, a = 100, b = 200;
ip = &a; iq = &b;
*ip = *iq; /* what changed? */ 
ip = iq;   /* what changed? */

80

84
88
92

96
100 
104
108

0

?               ip

?               iq

100            a

200            b

80

84
88
92

96
100 
104
108

0

88 ip

92 iq

100            a

200            b

80

84
88
92

96
100 
104
108

0

88 ip

92 iq

200            a

200            b

80

84
88
92

96
100 
104
108

0

92 ip

92 iq

200            a

200            b

COMP3221  lec02-C-language-I .43 Saeid Nooshabadi

Important Logical Operators

° Logical AND  (&&) and bitwise AND (&) 
operators:

char a=4, b=8, c;
c = a && b;
/* After this statement c =1*/
c = a & b;
/* After this statement c =0*/

Dec  Binary

a    4      0000 0100  > 0

b    8      0000 1000  > 0

a && b     True

a &b     0                  0000 0000

° Similarly logical OR (||) and bitwise OR (I) 
operators:

COMP3221  lec02-C-language-I .44 Saeid Nooshabadi

Important Shift Operators

°Logical AND  (&&) and bitwise AND (&) 
operators:

char a=4, b=8, c;
c = a << 2;
/* After this statement c =16*/
c = b >> 3;
/* After this statement c =1*/

Dec  Binary

a    4      0000 0100  > 0

b     8      0000 1000  > 0

a << 2    16             0001 0000

b >>3    1             0000 0001



COMP3221  lec02-C-language-I .45 Saeid Nooshabadi

Things to Remember (#1/2)

°All declarations go at the beginning of 
each function.

°Only 0 and NULL evaluate to FALSE.

°All data is in memory.  Each memory 
location has an address to use to refer 
to it and a value stored in it.

°A pointer is a High Level Language 
version of the address.

COMP3221  lec02-C-language-I .46 Saeid Nooshabadi

Things to Remember (#2/2)

°Use malloc and free to allow a 
pointer to point to something not 
already in a variable.

°An array name is just a pointer to the 
first element.

°A string is just an array of chars.


