COMP 3221

Microprocessors and Embedded Systems

Lecture 7: Number Systems - Il

http://www.cse.unsw.edu.au/~cs3221

COMP3221 lec07-numbers-lil.1

August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au

Saeid Nooshabadi

° Condition Code Flag interpretation

° Characters and Strings

°In Conclusion

COMP3221 lec07-numbers-lll.2

Saeid Nooshabadi

Review: int and unsigned intinC

° With N bits we can represent 2N different

Numbers:

* 2% numbers 0 to 2¥ -1 :0Only zero and Positive numbers

* 2% numbers -2%/2 to 0 to 2V/2- 1: Both Negative and positive
numbers in 2’s Complement

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

o JoUldWNKFE O

[ary
o v

11
12
13
14

o Ul WNERO

-8
-7
-6
-5
-4
-3
-2

Is 1000 > 0110

1000 > 0110 if only +ve
representation used

1000 < 0110 if both +ve
and -ve representation in 2’s
complement used

Review: Condition Flags

Flags Arithmetic Instruction
Negative Bit 31 of the result has been set
(N=1") Indicates a negative number in
signed operations
Zero Result of operation was zero
z=1)
Carry Result was greater than 32 bits
(C=1)
oVerflow Result was greater than 31 bits
(V=1 Indicates a possible corruption of
the sign bit in signed numbers
31 28 27 87654 0
||\|7f\\.r| P | | |1 E |T| mada |

B 4
Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

NOTE: V=MSB Carry In (XOR) MSB
Carry out

- No Overflow, V =
1 - Carryset,C=

0 - Result+Ve N

Result Not Zero Z=0

Signed interpretation: -1 + 2 = 1. The number is within the range of
—8 to +7. No oVerflow (V), Ignore Carry out.

Unsigned interpretation: 15 +2 = 17. The number is out of the
range of 0 to +15. Carry Set and oVerflow Not set. Indication for
overflow in unsigned.

COMP3221 lec07-numbers-lIL.5

0
1

0

Saeid Nooshabadi

e - - """"""'_""_' I 4
Indicate the changes in N, Z, C, V flags for the following arithmeti
operations: (Assume 4 bit-numbers)

NOTE: V= MSB Carry In (XOR)
0111 + MSB Carry out

Overflow, V =1
- Carryset,C=0

- Result -Ve N=1

Result Not Zero Z=0

Signed interpretation: 7 + 2 = 9. The number is out of the range of
-8 to +7. oVerflow (V), Ignore Carry out.

Unsigned interpretation: 7 + 2 = 9. The number is within the range
of 0 to +15. Carry Not set and oVerflow Set. Indication for No
overflow in unsigned.

COMP3221 lec07-numbers-IIl.6 Saeid Nooshabadi

Experimentation with Condition Flags (#3/4)

Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

1110 -
0111

OVerflow, V =1
- Carryset,C =1

= 0 = Result+Ve N=0

Result Not Zero Z2=0
Signed interpretation: -2 - 7 == -2 + (-7) =-9. The number is out of
the range of —8 to +7. oVerflow (V), Ignore Carry out.

Unsigned interpretation: 14 - 7= 7. The number is in of the range
of 0 to +15. Carrv Set and oVerflow Set. Indication for No overflow

"Experimentation with Condition Flags (#4/4)

Indicate the changes in N, Z, C, V flags for the following arithmeti
operations: (Assume 4 bit-numbers)

Overflow, V=0
- Carryset,C=0

0 = Result +Ve N=0

Result Not Zero Z=0

Signed interpretation: 3 + 2 = 5. The number is within of the range
of —8 to +7. No oVerflow (V), Ignore Carry out.

Unsigned interpretation: 3 + 2 = 5. The number is within the range
of 0 to +15. Carrv Not set and oVerflow Not set. Indication for No

S . .

Signed Arithmetic overflow Condition:

oVerflow flagV=0 NO OVERFLOW

oVerflow flag V=1 OVERFLOW

NOTE: V = MSB Carry In (XOR) MSB Carry out

UnSigned Arithmetic overflow Condition:

Oveflow:

(oVerflow flag V = 0) AND (Carry flag C = 0) NO OVERFLOW
(oVerflow flag V = 0) AND (Carry flag C=1) OVERFLOW
(oVerflow flag V = 1) AND (Carry flag C = 0) NO OVERFLOW
(oVerflow flag V =1) AND (Carry flag C =1) NO OVERFLOW

COMP3221 lec07-numbers-IIl.9 Saeid Nooshabadi

°Consider:
1111 = -1 in 4-bit representation
1111 1111 = -1 in 8-bit representation
1111 1111 1111 1111 = -1 in 16-bit representation

2’s comp. negative number has infinite 1s
0111 =7 in 4-bit representation
0000 0111 = 7 in 8-bit representation
0000 0000 0000 0111 =7 in 16-bit representation

» 2’s comp. positive number has infinite 0s
Bit representation hides leading bits

COMP3221 lec07-numbers-1Il.10 Saeid Nooshabadi

Two’s comp. shortcut: Sign extension

° Convert 2’s complement number using n
bits to more than n bits

° Simplg replicate the most significant bit
(sign bit) of smaller to fill new bits

*2’s comp. positive number has infinite Os
*2’s comp. negative number has infinite 1s

*Bit representation hides leading bits;
sign extension restores some of them

*16-bit -4,.,, to 32-bit:

ten

,@111 1111 1111 1100,
1111 1111 11111111/ 1111 1111 1111 1100,

Beyond Integers (Characters)

° 8-bit bytes represent characters, nearly every
computer uses American Standard Code for
Information Interchange (ASCII)

No. char No. char No. char No. char No. char No. char

32 480 |[64@ (80P | 96 |112p
33! |491 |[65A [|81Q | 97 a |113 g
34" (502 |66 B [82R | 98 b |114r
35# |513 |67C |83S | 99c |115 s

47 / |63 ? |790 |95 |111 0 (127 DEL

* Uppercase + 32 = Lowercase (e.g, B+32=b)

 tab=9, carriage return=13, backspace=8, Null=0
YL, D T L Y _ Y O .Y Y ¥ AN

-

° Characters normally combined into strings,
which have variable length

* e.g., “Cal”, “M.A.D”, “COMP3221”

°How represent a variable length string?
1) 1st position of string reserved for length of string (Pascal)

2) an accompanying variable has the length of string (as in a
structure)

3) last position of string is indicated by a character used to
mark end of string (C)

°C uses 0 (Null in ASCII) to mark end of string

COMP3221 lec07-numbers-1Il.13 Saeid Nooshabadi

-

° How many bytes to represent string “Popa”?

°What are values of the bytes for “Popa”?

No. char No. char No. char No. char

32 48 0 (64 Q@
33! ({491 |(65A
34" |[502 |66 B
354# |51 3 |67C

47 / |63 ? |790
°80,111, 112, 97,0
°50, 6F, 70,61,0

COMP3221 lec07-numbers-lll.14

No. char No. char
80P | 96 [112p
81Q | 97a |113 g
82R | 98b |114 «r
83 S 99 ¢ |115 s
95 |111 o ||127 DEL

DEC
HEX

Saeid Nooshabadi

Strings in C: Example

° String simply an array of char
void strcpy (char x[], char y[]) {
int i = 0; /* declare,initialize i*/

while ((x[i] = y[i]) !'= '\0") /* 0 */
i=1i4+4+1; /* copy and test byte */
}

What about non-Roman Alphabet?

°Unicode, universal encoding of the characters
of most human languages

» Java uses Unicode

* needs 16 bits to represent a character
» 16-bits called_half word in ARM

°Why not ASCIl computers vs. binary computers? °Numbers, Characters, logicals, ...

* Harder to build hardware for add, subtract, multiply, divide
* Memory space to store numbers

° Addresses

° How many bytes to represent 1 billion? " Commands (operations)

* example:
> ASCII: “1000000000” => 11 bytes - 0 =>clap your hands
. - 1 =>snap your fingers
°Binary: 0011 1011 1001 1010 1000 0000 0000 0000 - 2=>slap your hands down
=> 4 bytes
°up to 11/4 or almost 3X expansion of data size * execute:1020102010201020
* another example
- 0=>add
- 1 =>subtract
- 2 =>compare
Saeid N habadi) 3 => mUItipIy Saeid N habadi
How can we represent a machine instruction? The Stored Program Computer

Memory holds instructions and data as bits

° Some bits for the operation

Instructions are fetched from memory and
executed

» operands fetched, manipulated, and stored

° Some bits for the address of each operand

°Some bits for the address of the result
N-1 0

o

xample 4-digit Instruction

| operation | result addr | op1 addr | op2 addr |
00075 |

T
00077 | | operation |\resu|t addr |\ op1 addr | \op2 addr

©oo~N»

* result address

* op1 address 0 =>add
+ op2 address 1 => subtract
. 2 => compare
Example Data 3 => multiply

°Where could we put these things called

b d » 4 digit unsigned value
instructions? gft tinsig

° What’s in memory after executing 0,1,2?

°We can write a program that will translate
strings of ‘characters’ into ‘computer
instructions’

+ called a compiler or an assembler

°We can load these particular bits into the
computer and execute them.

* may manipulate numbers, characters, pixels... (application)
* may translate strings to instructions (compiler)
* may load and run more programs (operating system)

COMP3221 lec07-numbers-Iil.21 Saeid Nooshabadi

°We represent “things” in computers as
particular bit patterns

* numbers, characters, ...

- base, digits, positional notation

- unsigned, 2s complement, 1s complement
» addresses
* instructions

° Computer operations on the representation
ﬁ?_rrespond to real operations on the real
ing

* representation of 2 plus representation of 3 =
representation of 5

COMP3221 lec07-numbers-1ll.22 Saeid Nooshabadi

And in Conclusion...

°2’s complement universal in computing:
cannot avoid, so learn

° Overflow: numbers infinite but computers
finite, so errors occur

° Computers provide help to detect overflow

° Condition code flags N, Z, C and V provide
help to deal with arithmetic computation and
interpretation in signed and unsigned
representation.

