
COMP3221 lec07-numbers-III.1 Saeid Nooshabadi

COMP 3221

 Microprocessors and Embedded Systems

Lecture 7: Number Systems - III

 http://www.cse.unsw.edu.au/~cs3221

August, 2003
Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec07-numbers-III.2 Saeid Nooshabadi

Overview
° Condition Code Flag interpretation
° Characters and Strings
° In Conclusion

COMP3221 lec07-numbers-III.3 Saeid Nooshabadi

Review: int and unsigned int in C
° With N bits we can represent 2N different

Numbers:
• 2N numbers 0 to 2N - 1 :Only zero and Positive numbers
• 2N numbers -2N/2 to 0 to 2N/2- 1: Both Negative and positive

numbers in 2’s Complement
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

 0
 1
 2
 3
 4
 5
 6
 7
-8
-7
-6
-5
-4
-3
-2
-1

Is 1000 > 0110 ?

1000 > 0110 if only +ve
representation used

1000 < 0110 if both +ve
and -ve representation in 2’s
complement used

COMP3221 lec07-numbers-III.4 Saeid Nooshabadi

Flags Arithmetic Instruction

Negative Bit 31 of the result has been set
(N=‘1’) Indicates a negative number in

signed operations

Zero Result of operation was zero
(Z=‘1’)

Carry Result was greater than 32 bits
(C=‘1’)

oVerflow Result was greater than 31 bits
(V=‘1’) Indicates a possible corruption of

the sign bit in signed numbers

Review: Condition Flags

COMP3221 lec07-numbers-III.5 Saeid Nooshabadi

Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

 1110
1111 +
0010

 10001

Experimentation with Condition Flags (#1/4)

= 1 � Carry set, C = 1
= 0 � Result +Ve N = 0
Result Not Zero Z = 0

Signed interpretation: -1 + 2 = 1. The number is within the range of
–8 to +7. No oVerflow (V), Ignore Carry out.
Unsigned interpretation: 15 + 2 = 17. The number is out of the
range of 0 to +15. Carry Set and oVerflow Not set. Indication for
overflow in unsigned.

= � No Overflow, V = 0

NOTE: V = MSB Carry In (XOR) MSB
Carry out

COMP3221 lec07-numbers-III.6 Saeid Nooshabadi

Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

 0110
0111 +
0010

 01001

`Experimentation with Condition Flags (#2/4)

= 0 � Carry set, C = 0
= 1 � Result -Ve N = 1
Result Not Zero Z = 0

Signed interpretation: 7 + 2 = 9. The number is out of the range of
–8 to +7. oVerflow (V), Ignore Carry out.
Unsigned interpretation: 7 + 2 = 9. The number is within the range
of 0 to +15. Carry Not set and oVerflow Set. Indication for No
overflow in unsigned.

� � Overflow, V = 1

NOTE: V = MSB Carry In (XOR)
MSB Carry out

COMP3221 lec07-numbers-III.7 Saeid Nooshabadi

Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

 1000
1110 - 1110 +
0111 � 1001

10111

Experimentation with Condition Flags (#3/4)

� � OVerflow, V = 1
= 1 � Carry set, C = 1
= 0 � Result +Ve N = 0
Result Not Zero Z = 0

Signed interpretation: -2 - 7 = = -2 + (-7) =-9. The number is out of
the range of –8 to +7. oVerflow (V), Ignore Carry out.
Unsigned interpretation: 14 - 7 = 7. The number is in of the range
of 0 to +15. Carry Set and oVerflow Set. Indication for No overflow
in unsigned.

COMP3221 lec07-numbers-III.8 Saeid Nooshabadi

Indicate the changes in N, Z, C, V flags for the following arithmetic
operations: (Assume 4 bit-numbers)

 0010
0011 +
0010

 00101

`Experimentation with Condition Flags (#4/4)

= � Overflow, V = 0
= 0 � Carry set, C = 0
= 0 � Result +Ve N = 0
Result Not Zero Z = 0

Signed interpretation: 3 + 2 = 5. The number is within of the range
of –8 to +7. No oVerflow (V), Ignore Carry out.
Unsigned interpretation: 3 + 2 = 5. The number is within the range
of 0 to +15. Carry Not set and oVerflow Not set. Indication for No
overflow in unsigned.

COMP3221 lec07-numbers-III.9 Saeid Nooshabadi

Signed /Unsigned Overflow Summary

Signed Arithmetic overflow Condition:
oVerflow flag V = 0 NO OVERFLOW
oVerflow flag V = 1 OVERFLOW
NOTE: V = MSB Carry In (XOR) MSB Carry out
UnSigned Arithmetic overflow Condition:
Oveflow:
(oVerflow flag V = 0) AND (Carry flag C = 0) NO OVERFLOW
(oVerflow flag V = 0) AND (Carry flag C = 1) OVERFLOW
(oVerflow flag V = 1) AND (Carry flag C = 0) NO OVERFLOW
(oVerflow flag V = 1) AND (Carry flag C = 1) NO OVERFLOW

COMP3221 lec07-numbers-III.10 Saeid Nooshabadi

Sign Extension
° Consider:
 1111 = -1 in 4-bit representation

1111 1111 = -1 in 8-bit representation
1111 1111 1111 1111 = -1 in 16-bit representation

2’s comp. negative number has infinite 1s

0111 = 7 in 4-bit representation
0000 0111 = 7 in 8-bit representation

0000 0000 0000 0111 = 7 in 16-bit representation
• 2’s comp. positive number has infinite 0s

Bit representation hides leading bits

COMP3221 lec07-numbers-III.11 Saeid Nooshabadi

Two’s comp. shortcut: Sign extension

° Convert 2’s complement number using n
bits to more than n bits

° Simply replicate the most significant bit
(sign bit) of smaller to fill new bits
•2’s comp. positive number has infinite 0s
•2’s comp. negative number has infinite 1s
•Bit representation hides leading bits;
sign extension restores some of them
•16-bit -4ten to 32-bit:

1111 1111 1111 1100two

1111 1111 1111 1111 1111 1111 1111 1100two

COMP3221 lec07-numbers-III.12 Saeid Nooshabadi

Beyond Integers (Characters)
° 8-bit bytes represent characters, nearly every

computer uses American Standard Code for
Information Interchange (ASCII)

32 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
...
47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No.char char char char char char

• Uppercase + 32 = Lowercase (e.g, B+32=b)
• tab=9, carriage return=13, backspace=8, Null=0

(Table in CD-ROM)

COMP3221 lec07-numbers-III.13 Saeid Nooshabadi

Strings
° Characters normally combined into strings,

which have variable length
• e.g., “Cal”, “M.A.D”, “COMP3221”

° How represent a variable length string?
1) 1st position of string reserved for length of string (Pascal)
2) an accompanying variable has the length of string (as in a

structure)
3) last position of string is indicated by a character used to

mark end of string (C)

° C uses 0 (Null in ASCII) to mark end of string

COMP3221 lec07-numbers-III.14 Saeid Nooshabadi

32 48 0 64 @ 80 P 96 ` 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
...
47 / 63 ? 79 O 95 _ 111 o 127 DEL

No. No. No. No. No. No.char char char char char char

Example String
° How many bytes to represent string “Popa”?
° What are values of the bytes for “Popa”?

° 80, 111, 112, 97, 0 DEC
° 50, 6F, 70, 61, 0 HEX

COMP3221 lec07-numbers-III.15 Saeid Nooshabadi

Strings in C: Example
° String simply an array of char
void strcpy (char x[], char y[]){
int i = 0; /* declare,initialize i*/

while ((x[i] = y[i]) != ’\0’) /* 0 */
 i = i + 1; /* copy and test byte */
}

COMP3221 lec07-numbers-III.16 Saeid Nooshabadi

What about non-Roman Alphabet?
° Unicode, universal encoding of the characters

of most human languages
• Java uses Unicode
• needs 16 bits to represent a character
• 16-bits called half word in ARM

COMP3221 lec07-numbers-III.17 Saeid Nooshabadi

ASCII v. Binary
° Why not ASCII computers vs. binary computers?

• Harder to build hardware for add, subtract, multiply, divide
• Memory space to store numbers

° How many bytes to represent 1 billion?
° ASCII: “1000000000” => 11 bytes
° Binary: 0011 1011 1001 1010 1000 0000 0000 0000

=> 4 bytes
° up to 11/4 or almost 3X expansion of data size

COMP3221 lec07-numbers-III.18 Saeid Nooshabadi

What else is useful to represent?
° Numbers, Characters, logicals, ...
° Addresses
° Commands (operations)

• example:
- 0 => clap your hands
- 1 => snap your fingers
- 2 => slap your hands down

• execute: 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0

• another example
- 0 => add
- 1 => subtract
- 2 => compare
- 3 => multiply

COMP3221 lec07-numbers-III.19 Saeid Nooshabadi

How can we represent a machine instruction?

° Some bits for the operation
° Some bits for the address of each operand
° Some bits for the address of the result

° Where could we put these things called
instructions?

operation result addr op1 addr op2 addr

0N-1

d = x + y add d x y

COMP3221 lec07-numbers-III.20 Saeid Nooshabadi

The Stored Program Computer

° Memory holds instructions and data as bits
° Instructions are fetched from memory and

executed
• operands fetched, manipulated, and stored

° Example 4-digit Instruction

• operation: 0 => add, 1 => sub
• result address
• op1 address
• op2 address

° Example Data
• 4 digit unsigned value

° What’s in memory after executing 0,1,2?

0 0 7 4 5
1 1 8 7 3
2 0 9 8 9
3 0 0 0 3
4 0 0 6 1
5 0 0 1 7
6 0 0 0 3
7 0 0 0 0
8 0 0 0 0
9 0 0 0 2

0 0 0 7 8
0 0 0 7 5
0 0 0 7 7 operation result addr op1 addr op2 addr

0 => add
1 => subtract
2 => compare
3 => multiply

COMP3221 lec07-numbers-III.21 Saeid Nooshabadi

So what’s it all mean?

° We can write a program that will translate
strings of ‘characters’ into ‘computer
instructions’

• called a compiler or an assembler

° We can load these particular bits into the
computer and execute them.

• may manipulate numbers, characters, pixels... (application)
• may translate strings to instructions (compiler)
• may load and run more programs (operating system)

COMP3221 lec07-numbers-III.22 Saeid Nooshabadi

To remember

° We represent “things” in computers as
particular bit patterns

• numbers, characters, ... (data)
- base, digits, positional notation
- unsigned, 2s complement, 1s complement

• addresses (where to find it)
• instructions (what to do)

° Computer operations on the representation
correspond to real operations on the real
thing

• representation of 2 plus representation of 3 =
representation of 5

° two big ideas already!
• Pliable Data: a program determines what it is
• Stored program concept: instructions are just data

COMP3221 lec07-numbers-III.23 Saeid Nooshabadi

And in Conclusion...

° 2’s complement universal in computing:
cannot avoid, so learn

° Overflow: numbers infinite but computers
finite, so errors occur

° Computers provide help to detect overflow
° Condition code flags N, Z, C and V provide

help to deal with arithmetic computation and
interpretation in signed and unsigned
representation.

