COMP 3221 Microprocessors and Embedded Systems Lecture 7: Number Systems - III http://www.cse.unsw.edu.au/~cs3221 August, 2003		ion Code Flag interpretation cters and Strings clusion	
Saeid Nooshabadi			
Saeid@unsw.edu.au			
COMP3221 lec07-numbers-III.1 Saeid Nooshabadi	COMP3221 lec07-numbers-III	.2 Saeid Nooshabadi	
Review: int and unsigned int in C		Review: Condition Flags	
° With N bits we can represent 2 ^N different Numbers:	Flags	Arithmetic Instruction	
 2^N numbers 0 to 2^N - 1 :Only zero and Positive numbers 2^N numbers -2^N/2 to 0 to 2^N/2- 1: Both Negative and positive numbers in 2's Complement 	Negative (N='1')	Bit 31 of the result has been set Indicates a negative number in	

nun	nbers ii	n 2's Corr	nplement
0000	0	0	
0001	1	1	
0010	2	2	Is 1000 > 0110 ?
0011	3	3	
0100	4	4	
0101	5	5	1000 > 0110 if only +ve
0110	6	6	-
0111	7	7	representation used
1000	8	-8	
1001	9	-7	
1010	10	-6	1000 < 0110 if both +ve
1011	11	-5	and -ve representation in 2's
1100	12	-4	the second s
1101	13	-3	complement used
1110	14	-2	-

Flags	Arithmetic Instruction
Negative (N='1')	Bit 31 of the result has been set Indicates a negative number in signed operations
Zero (Z='1')	Result of operation was zero
Carry (C='1')	Result was greater than 32 bits
oVerflow (V='1')	Result was greater than 31 bits Indicates a possible corruption of the sign bit in signed numbers
31 <u>28 27</u>	87654 0

Indicate the changes in N, Z, C, V flags for the following arithmetic operations: (Assume 4 bit-numbers)

Unsigned interpretation: 15 + 2 = 17. The number is out of the range of 0 to +15. Carry Set and oVerflow Not set. Indication for overflow in unsigned. Saeid Nooshabadi

Experimentation with Condition Flags (#3/4)

Indicate the changes in N, Z, C, V flags for the following arithmetic operations: (Assume 4 bit-numbers)

Signed interpretation: -2 - 7 = -2 + (-7) = -9. The number is out of the range of -8 to +7. **oVerflow (V)**, Ignore Carry out.

Unsigned interpretation: 14 - 7 = 7. The number is in of the range of 0 to +15. Carry Set and oVerflow Set. Indication for No overflow

Indicate the changes in N, Z, C, V flags for the following arithmetic operations: (Assume 4 bit-numbers)

Unsigned interpretation: 7 + 2 = 9. The number is within the range of 0 to +15. Carry Not set and oVerflow Set. Indication for No overflow in unsigned. COMP3221 lec07-numbers-III.6

Experimentation with Condition Flags (#4/4)

Indicate the changes in N, Z, C, V flags for the following arithmetic operations: (Assume 4 bit-numbers)

Signed interpretation: 3 + 2 = 5. The number is within of the range of -8 to +7. No oVerflow (V), Ignore Carry out.

Unsigned interpretation: 3 + 2 = 5. The number is within the range of 0 to +15. Carry Not set and oVerflow Not set. Indication for No

Signed Arithmetic overflow Condition: oVerflow flag V = 0 NO OVERFLOW oVerflow flag V = 1 OVERFLOW NOTE: V = MSB Carry In (XOR) MSB Carry out UnSigned Arithmetic overflow Condition:

Oveflow:

COMP3221 lec07-numbers-III.9

(oVerflow flag V = 0) AND (Carry flag C = 0) NO OVERFLOW

(oVerflow flag V = 0) AND (Carry flag C = 1) OVERFLOW

(oVerflow flag V = 1) AND (Carry flag C = 0) NO OVERFLOW

(oVerflow flag V = 1) AND (Carry flag C = 1) NO OVERFLOW

U

° Consider:

1111 = -1 in 4-bit representation

1111 1111 = -1 in 8-bit representation

1111 1111 1111 1111 = -1 in 16-bit representation

2's comp. negative number has infinite 1s

0111 = 7 in 4-bit representation

0000 0111 = 7 in 8-bit representation

0000 0000 0000 0111 = 7 in 16-bit representation

• 2's comp. positive number has infinite 0s

Bit representation hides leading bits

COMP3221 lec07-numbers-III.10

Saeid Nooshabadi

Two's comp. shortcut: Sign extension

Saeid Nooshabadi

- Convert 2's complement number using n bits to more than n bits
- Simply replicate the most significant bit (sign bit) of smaller to fill new bits

•2's comp. positive number has infinite 0s

•2's comp. negative number has infinite 1s

•Bit representation hides leading bits; sign extension restores some of them

•16-bit -4_{ten} to 32-bit:

1111 1111 1111 1100_{two}

Beyond Integers (Characters)

 8-bit bytes represent characters, nearly every computer uses American Standard Code for Information Interchange (ASCII)

No.	char	No.	char	No.	char	No. c	har	No. c	har	No.	char
32		48	0	64	9	80	Ρ	96	`	112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34	**	50	2	66	в	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	S
• •	•	••	•	• •	•	• •	•				
47	/	63	?	79	0	95		111	ο	127	DEI

• Uppercase + 32 = Lowercase (e.g, B+32=b)

• tab=9, carriage return=13, backspace=8, Null=0

(Table in CD DOM)

Characters normally combined into strings, which have variable length

• e.g., "Cal", "M.A.D", "COMP3221"

[°] How represent a variable length string?

- 1) 1st position of string reserved for length of string (Pascal)
- 2) an accompanying variable has the length of string (as in a structure)
- 3) last position of string is indicated by a character used to mark end of string (C)

° C uses 0 (Null in ASCII) to mark end of string

COMP3221 lec07-numbers-III.13

Saeid Nooshabadi

Strings in C: Example

```
° String simply an array of char
void strcpy (char x[], char y[]) {
int i = 0; /* declare, initialize i*/
while ((x[i] = y[i]) != '\0') /* 0 */
```

```
i = i + 1; /* copy and test byte */
```

- ° How many bytes to represent string "Popa"?
- ° What are values of the bytes for "Popa"?

No.	char	No. d	char	No.	char	No. c	har	No. c	har	No.	char
32		48	0	64	9	80	Ρ	96	`	112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34	11	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	S
• •	•	••	•	• •	•	• •	•	• • •		• • •	
47	/	63	?	79	0	95		111	0	127	DEL
[°] 80, 111, 112, 97, 0 DEC [°] 50, 6F, 70, 61, 0 HEX ^{COMP3221 lec07-numbers-III.14} Saeid Nooshabadi						ıbadi					

What about non-Roman Alphabet?

¹<u>Unicode</u>, universal encoding of the characters of most human languages

- Java uses Unicode
- needs 16 bits to represent a character
- 16-bits called half word in ARM

 [°] We can write a program that will translat strings of 'characters' into 'computer instructions' • called a compiler or an assembler [°] We can load these particular bits into the computer and execute them. • may manipulate numbers, characters, pixels (appl • may translate strings to instructions (compiler • may load and run more programs (operating sy 	e lication)	 We represent "things" in particular bit patterns numbers, characters, base, digits, positional not unsigned, 2s complement, addresses instructions Computer operations on correspond to real operations representation of 2 plus representation of 5 two big ideas already! Pliable Data: a program determ Stored program concept: instruction 	(data) ation 1s complement (where to find it) (what to do) the representation ions on the real	
COMP3221 lec07-numbers-III.21 Saeia	d Nooshabadi	COMP3221 lec07-numbers-III.22	Saeid Nooshabadi	
And in Conclusion				
° 2's complement universal in computing cannot avoid, so learn	J:			
° Overflow: numbers infinite but compute finite, so errors occur	ers			
° Computers provide help to detect overf	low			
[°] Condition code flags N, Z, C and V prov help to deal with arithmetic computatio interpretation in signed and unsigned representation.	ride n and			