
COMP3221 lec08-arith.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 8: C/Assembler Data Processing

http://www.cse.unsw.edu.au/~cs3221

August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec08-arith.2 Saeid Nooshabadi

Overview

° C operators, operands

° Variables in Assembly: Registers

° Comments in Assembly

° Data Processing Instructions

° Addition and Subtraction in Assembly

COMP3221 lec08-arith.3 Saeid Nooshabadi

Review C Operators/Operands (#1/2)

° Operators: +, -, *, /, % (mod);
•7/4==1, 7%4==3

° Operands:
• Variables: lower, upper, fahr, celsius
• Constants: 0, 1000, -17, 15.4

° Assignment Statement:

Variable = expression
• Examples:

celsius = 5*(fahr-32)/9;
a = b+c+d-e;

COMP3221 lec08-arith.4 Saeid Nooshabadi

C Operators/Operands (#2/2)

° In C (and most High Level Languages)
variables declared first and given a type

• Example: int fahr, celsius;
char a, b, c, d, e;

° Each variable can ONLY represent a value
of the type it was declared as (cannot mix
and match int and char variables).

COMP3221 lec08-arith.5 Saeid Nooshabadi

Assembly Design: Key Concepts

° Keep it simple!
• Limit what can be a variable and what can’t

• Limit types of operations that can be done to
absolute minimum

- if an operation can be decomposed into a simpler
operation, don’t include it.

- For example 7%4 operation is complex. We
break it into simpler operations in
Assembly

COMP3221 lec08-arith.6 Saeid Nooshabadi

Assembly Variables: Registers (#1/4)

° Unlike HLL, assembly cannot use variables
• Why not? Keep Hardware Simple

° Assembly Operands are registers
• limited number of special locations built directly into the

hardware

• operations can only be performed on these!

° Benefit: Since registers are directly in
hardware, they are very fast

COMP3221 lec08-arith.7 Saeid Nooshabadi

Assembly Variables: Registers (#2/4)

° Drawback: Since registers are in hardware,
there are a predetermined number of them

• Solution: ARM code must be very carefully put together to
efficiently use registers

° 16 registers in ARM
• Why 16? Smaller is faster

° Each ARM register is 32 bits wide
• Groups of 32 bits called a word in ARM

COMP3221 lec08-arith.8 Saeid Nooshabadi

Assembly Variables: Registers (#3/4)

° Registers are numbered from 0 to 15

° Each register can be referred to by number
or name

° Number references:
r0, r1, r2, … r15

°r15 = pc has special significant:

°r15 is program counter pointing to
instructions being fetched from memory

COMP3221 lec08-arith.9 Saeid Nooshabadi

Assembly Variables: Registers (#4/4)

° By convention, each register also has a
name to make it easier to code

° For now:
r0 – r3 a1 – a4

(correspond to C functions arguments. Used for scratch
pad too!)

r4 – r10 v1 – v7
(correspond to function variables)

° In general, use names to make your code
more readable

COMP3221 lec08-arith.10 Saeid Nooshabadi

Comments in Assembly

° Another way to make your code more
readable: comments!

° Hash (;) is used for ARMS comments
• anything from (;) mark to end of line is a comment and will

be ignored

• GNU ARM assembler accepts (@) instead of (;) as well

° Note: Different from C.
• C comments have format /* comment */ , so they can span

many lines

• GNU ARM assembler accepts /* comments*/ as well.

COMP3221 lec08-arith.11 Saeid Nooshabadi

Assembly Instructions

° In assembly language, each statement
(called an Instruction), executes exactly one
of a short list of simple commands

° Unlike in C (and most other High Level
Languages), each line of assembly code
contains at most 1 instruction

COMP3221 lec08-arith.12 Saeid Nooshabadi

Data processing Instructions

° Largest category of ARM instructions, all sharing the
same instruction format.

° Contains:
• Arithmetic operations
• Comparisons (no results saved - just set condition code flags NZCV)
• Logical operations
• Data movement between registers

° This is a load / store architecture
• These instruction only work on registers, NOTNOT memory.

° They each perform a specific operation on operands.
4 field Format: 1 2, 3, 4
where:
1) operation by name
2) operand getting result (“destination”)
3) 1st operand for operation (“source1”)
4) second operand: register or shifted register or

immediate (numerical constant)

COMP3221 lec08-arith.13 Saeid Nooshabadi

Using the Barrel Shifter: The Second Operand
Register, optionally with shift operation

applied.

Shift value can be either be:
• 5 bit unsigned integer add a1, v1, v3, lsl #8
;a1 v1 +(v3 << 8 bits)

• Specified in bottom byte of another
register. add a1, v1, v3, lsl v4
;a1 v1 +(v3 << v4 bits)

Operand 1

Result

ALU

Barrel
Shifter

Operand 2

° Immediate value.
• 8 bit number
• Can be rotated right through an

even number of positions.
• Assembler will calculate rotate

for you from constant.
add a1, v1, #10

;a1 v1 + 10 COMP3221 lec08-arith.14 Saeid Nooshabadi

Addition and Subtraction (#1/3)

° Addition in Assembly
• Example: add v1,v2,v3 (in ARM)

Equivalent to: a = b + c (in C)

where registers v1,v2,v3 are associated with variables a,
b, c

° Subtraction in Assembly
• Example: sub v4,v5,v6 (in ARM)

Equivalent to: d = e - f (in C)

where registers v4,v5,v6 are associated with variables d,
e, f

COMP3221 lec08-arith.15 Saeid Nooshabadi

Addition and Subtraction (#2/3)

° How do we do this?
•f = (g + h) - (i + j);

° Use intermediate register
add v1,v2,v3 ; f = g + h
add a1,v4,v5 ; a1 = i + j
; need to save i+j, but can’t use f, so use a1

sub v1,v1,a1 ; f=(g+h)-(i+j)

COMP3221 lec08-arith.16 Saeid Nooshabadi

Addition and Subtraction (#3/3)

° How do the following C statement?a = b + c + d - e;
° Break into multiple instructions

add v1, v2, v3 ; a = b + c
add v1, v1, v4 ; a = a + d
sub v1, v1, v5 ; a = a - e

° Notice: A single line of C may break up into
several lines of ARM instructions.

° Notice: Everything after the (;) mark on each
line is ignored (comments)

COMP3221 lec08-arith.17 Saeid Nooshabadi

Addition/Subtraction with Immediates (#1/2)

° Immediates are numerical constants.

° They appear often in code, so there are
special instructions for them.

° Add Immediate:
add v1,v2,#10 (in ARM)

f = g + 10 (in C)

where registers v1,v2 are associated with variables f, g
° Syntax similar to add instruction with

register, except that last argument is a
number instead of a register. This number
should be preceded by (#) symbol

COMP3221 lec08-arith.18 Saeid Nooshabadi

Addition/Subtraction with Immediates (#2/2)

° Similarly

add v1,v2,#-10
f = g - 10 (in C)

where registers v1,v2 are associated with variables f, g
° OR

sub v1,v2,#10
f = g - 10 (in C)

where registers v1,v2 are associated with variables f, g

COMP3221 lec08-arith.19 Saeid Nooshabadi

Data Movement Instruction

° Addition with zero is conveniently used to move
content of one register to another register, so:
add v1,v2,#0 (in ARM)

f = g (in C)

where registers v1,v2 are associated with variables f, g
° This is so often used in code that ARM has an

specific instruction for it:
mov v1, v2

° Another useful instruction often used to provide
delay in a loop is

mov v1, v1 ;this also called nop (No Operation)
• This does nothing useful

COMP3221 lec08-arith.20 Saeid Nooshabadi

Reverse Subtraction Instruction

° Normal Subtraction:
• Example: sub v4,v5,v6 (in ARM); v4 v5 – v6

Equivalent to: d = e - f (in C)

where registers v4,v5,v6 are associated with variables d, e, f
° Reverse Subtraction:

• Example: rsb v4,v5,v6 (in ARM) ; v4 v6 – v5

Equivalent to: d = - (e) + f (in C)

where registers v4,v5,v6 are associated with variables d, e, f
°rsb is useful in many situations

COMP3221 lec08-arith.21 Saeid Nooshabadi

COMP3221 Reading Materials (Week #3)
° Week #3: Steve Furber: ARM System On-Chip; 2nd Ed,

Addison-Wesley, 2000, ISBN: 0-201-67519-6. We use
chapters 3 and 5

° ARM Architecture Reference Manual –On CD ROM

COMP3221 lec08-arith.22 Saeid Nooshabadi

“And in Conclusion…”
° New Instructions:

add
sub
mov

° New Registers:
C Function Variables: v1 – v7
Scratch Variables: a1 – a4

