
COMP3221 lec10-logical-II&mul.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 10: C/Assembler Logical and Shift – II
& Multiplication

http://www.cse.unsw.edu.au/~cs3221
August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec10-logical-II&mul.2 Saeid Nooshabadi

Overview

° Shift Operations
• Field Insertion

° Multiplication Operations
• Multiplication

• Long Multiplication

• Multiplication and accumulation

• Signed and unsigned multiplications

COMP3221 lec10-logical-II&mul.3 Saeid Nooshabadi

Review: ARM Instructions So far
add
sub
mov
and
bic
orr
eor
Data Processing Instructions with
shift and rotate
lsl, lsr, asr, ror

COMP3221 lec10-logical-II&mul.4 Saeid Nooshabadi

Review: Masking via Logical AND

° AND:Note that anding a bit with 0 produces a
0 at the output while anding a bit with 1
produces the original bit.

° This can be used to create a mask.
• Example:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 0000 1111 1111
• The result of anding these two is:

0000 0000 0000 0000 0000 0000 1001 1010

Mask:

COMP3221 lec10-logical-II&mul.5 Saeid Nooshabadi

Review: Masking via Logical BIC

° BIC (AND NOT):Note that bicing a bit with 1
produces a 0 at the output while bicing a bit
with 0 produces the original bit.

° This can be used to create a mask.
• Example:

1011 0110 1010 0100 0011 1101 1001 1010

0000 0000 0000 0000 0000 0000 1111 1111
• The result of bicing these two is:

1011 0110 1010 0100 0011 1101 0000 0000

Mask:

COMP3221 lec10-logical-II&mul.6 Saeid Nooshabadi

Extracting a field of bits (#1/2)

° Shift field as far left as possible (9 31) and then as far
right as possible (31 7)

° Extract bit field from bit 9 (left bit no.) to bit 2 (size=8
bits) of register v1, place in rightmost part of register a1

012345678931
v1

0000 00000000000000000000 a1

00 00000000000000000000 a1
0000 00000000000000000000 a1

v1

COMP3221 lec10-logical-II&mul.7 Saeid Nooshabadi

Extracting a field of bits (#2/2)
mov a1, v1, lsl #22 ;8 bits to left end (31-9)

00 00000000000000000000 a1

v1

mov a1, a1, lsr #24 ;8 bits to right end(7-0)
00 00000000000000000000 a1

0000 00000000000000000000 a1

COMP3221 lec10-logical-II&mul.8 Saeid Nooshabadi

Inserting a field of bits

° Shift left field 2 bits, Mask out field, OR in field

° Insert bit field into bit 9 (left bit no.) to bit 2 (size=8 bits) of
register a1 from rightmost part of register v1 (rest is 0)

°mov a2, v1, lsl #2 ; field left 2 bic a1, a1, #0x3FC ; mask out 9-2 ; 0x03FC = 0011 1111 1100orr a1, a1, a2 ; OR in field

012345678931
0000 00000000000000000000 v1

a1

00000000 a1 masked
0000 00 000000000000000000 a2=v1<<2

a1 ored a2

; bic stands for ‘bit clear, where ‘1’ in the second operand clears
; the corresponding bit in the first

COMP3221 lec10-logical-II&mul.9 Saeid Nooshabadi

Bit manipulation in C (#1/2)
° Convert C code to ARM ASM

° Bit Fields in C (Word as 32 bits vs int/unsigned!)struct {unsigned int ready: 1; /* bit 0 */unsigned int enable: 1; /* bit 1 */ } rec; rec.enable = 1;rec.ready = 0;printf(“%d %d“, rec.enable, rec.ready);...

rec

0131

enable

ready

Brian Kernighan & Dennis Ritchie:
The C Programming Language, 2nd Ed., PP 150

COMP3221 lec10-logical-II&mul.10 Saeid Nooshabadi

Bit manipulation in C (#2/2)
struct {unsigned int ready: 1; /* bit 0 */unsigned int enable: 1; /* bit 1 */ } rec; /* v1 */rec.enable = 1;rec.ready = 0;printf(“%d %d“, rec.enable, rec.ready);
orr v1,v1, #0x2 ;1 in bit 1 bic v1,v1 #1 ;0 in bit 0,

ldr a1, =LCO ;printf formatmov a2, v1, lsr #1 ;just bit 1 and a2, a2,0x0001 ;mask down to 1and a3, v1, 0x0001 ;just bit 0 bl printf ;call printf

; bic stands for ‘bit clear, where ‘1’ in the second operand clears
; the corresponding bit in the first

COMP3221 lec10-logical-II&mul.11 Saeid Nooshabadi

Multiply by Power of 2 via Shift Left (#1/3)

° In decimal:
• Multiplying by 10 is same as shifting left by 1:

- 71410 x 1010 = 714010

- 5610 x 1010 = 56010

• Multiplying by 100 is same as shifting left by 2:

- 71410 x 10010 = 7140010

- 5610 x 10010 = 560010

• Multiplying by 10n is same as shifting left by n

COMP3221 lec10-logical-II&mul.12 Saeid Nooshabadi

Multiply by Power of 2 via Shift Left (#2/3)

° In binary:
• Multiplying by 2 is same as shifting left by 1:

- 112 x 102 = 1102

- 10102 x 102 = 101002

• Multiplying by 4 is same as shifting left by 2:

- 112 x 1002 = 11002

- 10102 x 1002 = 1010002

• Multiplying by 2n is same as shifting left by n

COMP3221 lec10-logical-II&mul.13 Saeid Nooshabadi

Multiply by Power of 2 via Shift Left (#3/3)

° Since shifting is so much faster than
multiplication (you can imagine how
complicated multiplication is), a good
compiler usually notices when C code
multiplies by a power of 2 and compiles it to
a shift instruction:
a *= 8; (in C)

would compile to:
mov a0,a0,lsl #3 (in ARM)

COMP3221 lec10-logical-II&mul.14 Saeid Nooshabadi

Shift, Add and Subtract for Multiplication

Add and Subtract Examples:
f = 5*g /* f = (4+1) x g */ (in C)

add v1,v2,v2 lsl #2 ; v1 = v2 + v2 *4 (in ARM)

f = 105 *g /* f = (15 x 7) x g */ (in C)

/* f = (16 –1) x (8 – 1) x g */
rsb v1,v2,v2 lsl #4 ; v1 = -v2 + v2 *16 (in ARM)

; f = (16-1)* g
rsb v1,v1,v1 lsl #3 ; v1 = -v1 + v1 *8 (in ARM)

; f = (8-1)* f

COMP3221 lec10-logical-II&mul.15 Saeid Nooshabadi

Shift, Add and Subtract for Division

• ARM does not have division.

• Division A/B produces a quotient and a
remainder.

• It should be done via sequence of subtraction
and shifting (See Experiment 3)

• For B in A/B a constant value (eg 10) simpler
technique via Shift, Add and Subtract is
available (Will be discussed later)

COMP3221 lec10-logical-II&mul.16 Saeid Nooshabadi

Shift Right Arithmetic; Divide by 2???
° Shifting left by n is same as Multiplying by 2n

° Shifting right by n bits would seem to be the
same as dividing by 2n

° Problem is signed integers
• Zero fill is wrong for negative numbers

° Shift Right Arithmetic (asr); sign extends
(replicates sign bit);

° 1111 1111 1111 1000 = -8
° 1111 1111 1111 1100 = -4
° 1111 1111 1111 1110 = -2
° 1111 1111 1111 1111 = -1

COMP3221 lec10-logical-II&mul.17 Saeid Nooshabadi

Is asr really divide by 2?

° Divide +5 by 4 via asr 2; result should be 1

0000 0000 0000 0000 0000 0000 0000 0101

0000 0000 0000 0000 0000 0000 0000 0001

° = +1, so does work

° Divide -5 by 4 via asr 2; result should be -1

1111 1111 1111 1111 1111 1111 1111 1011

1111 1111 1111 1111 1111 1111 1111 1110

° = -2, not -1; Off by 1, so doesn’t always work

° Rounds to –∞

COMP3221 lec10-logical-II&mul.18 Saeid Nooshabadi

MULTIPLY (unsigned): Terms, Example
° Paper and pencil example (unsigned):
Multiplicand 1000Multiplier 100110000000

0000
1000

Product 01001000
•m bits x n bits = m+n bit product

•32-bit value x 32-bit value = 64-bit value

COMP3221 lec10-logical-II&mul.19 Saeid Nooshabadi

Multiplication Instructions
° The Basic ARM provides two multiplication instructions.

° Multiply
• mul Rd, Rm, Rs ; Rd = Rm * Rs

° Multiply Accumulate - does addition for free
• mla Rd, Rm, Rs,Rn ; Rd = (Rm * Rs) + Rn

° (Lower precision multiply instructions simply throws top
32bits away)

° Restrictions on use:
• Rd and Rm cannot be the same register

- Can be avoided by swapping Rm and Rs around. This works
because multiplication is commutative.

• Cannot use PC.

These will be picked up by the assembler if overlooked.

° Operands can be considered signed or unsigned
• Up to user to interpret correctly.

COMP3221 lec10-logical-II&mul.20 Saeid Nooshabadi

Multiplication Example

° Example:
• in C: a = b * c;
• in ARM:

- let b be v1; let c be v2; and let a be v3 (It may be up
to 64 bits)

mul v3, v2, v1 ;a = b*c
; lower half of product into
; v3. Upper half is thrown up

° Note: Often, we only care about the lower
half of the product.

COMP3221 lec10-logical-II&mul.21 Saeid Nooshabadi

Multiplication and Accumulate Example
° One example of use of mla is for string to

number conversion: eg
Convert string=“123” to value=123

value = 0
loop = 0
len = length of string
Rd = value
while loop <> len
c = extract(string, len - loop,1)
Rm = 10 ^ loop
Rs = ASC(c) - ASC (‘0’)
mla Rd, Rm, Rs, Rd
loop = loop + 1
endwhile

COMP3221 lec10-logical-II&mul.22 Saeid Nooshabadi

Multiply-Long and Multiply-Accumulate Long

° Instructions are
• MULL which gives RdHi,RdLo:=Rm*Rs
• MLAL which gives RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo

° However the full 64 bit of the result now matter (lower
precision multiply instructions simply throws top 32 bits
away)

• Need to specify whether operands are signed or unsigned

° Therefore syntax of new instructions are:
• umull RdLo,RdHi,Rm,Rs ;RdHi,RdLo:=Rm*Rs
• umlal RdLo,RdHi,Rm,Rs ;RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo
• smull RdLo, RdHi, Rm, Rs ;RdHi,RdLo:=Rm*Rs (Signed)
• smlal RdLo, RdHi, Rm, Rs ;RdHi,RdLo:=(Rm*Rs)+RdHi,RdLo (Signed)

° Not generated by the compiler. (Needs Hand coding)

COMP3221 lec10-logical-II&mul.23 Saeid Nooshabadi

Division
° No Division Instruction in ARM

° Division has two be done in software through a
sequence of shift/ subtract / add instruction.

• General A/B implementation (See Experiment
3)

• For B in A/B a constant value (eg 10) simpler
technique via Shift, Add and Subtract is
available (Will be discussed later)

COMP3221 lec10-logical-II&mul.24 Saeid Nooshabadi

Quiz

1. Specify instructions which will implement the
following:

a) a1 = 16 b) a2 = a1 * 4

c) a1 = a2 / 16 (r1 signed 2's comp.) d) a2 = a3 * 7

2. What will the following instructions do?
a) add a1, a2, a2, lsl #2 b) rsb a3, a2, #0

3. What does the following instruction sequence do?
add a1, a2, a2, lsl #1
sub a1, a1, a2, lsl #4
add a1, a1, a2, lsl #7

COMP3221 lec10-logical-II&mul.25 Saeid Nooshabadi

Quiz Solution (#1/2)

1. Specify instructions which will implement the
following:
a) a1 = 16 mov a1, #16
b) a2 = a1 * 4 mov a2, a1, lsl #2
c) a1 = a2 / 16 (r1 signed 2's comp.) mov a1, a2, asr #4
d) a2 = a3 * 7 rsb a2, a3, a3, lsl #3

a2 = a3* (8-1)

whereas sub a2, a3, a3, lsl #3 would give a3* -7

2. What will the following instructions do?
a) add a1, a2, a2, lsl #2
a1= a2+ (a2 * 4) ie a1:=a2*5
b) rsb a3, a2, #0

° r2=0-r1 ie r2:= -r1

COMP3221 lec10-logical-II&mul.26 Saeid Nooshabadi

Quiz Solution (#2/2)

3. What does the following instruction
sequence do?
add a1, a2, a2, lsl #1
sub a1, a1, a2, lsl #4
add a1, a1, a2, lsl #7

a1 = a2 + (a2 * 2) = a2 * 3
a1 = a1 - (a2 * 16)= (a2 * 3) - (a2 * 16) = a2 * -13
a1 = a1 + (a2 * 128) = (a2 * -13) + (a2 * 128)

= r1 * 115
i.e. a1 = a2 * 115

COMP3221 lec10-logical-II&mul.27 Saeid Nooshabadi

COMP3221 Reading Materials (Week #4)
° Week #4: Steve Furber: ARM System On-Chip; 2nd Ed,

Addison-Wesley, 2000, ISBN: 0-201-67519-6. We use
chapters 3 and 5

° ARM Architecture Reference Manual –On CD ROM

COMP3221 lec10-logical-II&mul.28 Saeid Nooshabadi

“And in Conclusion…”
° New Instructions:

mul
mla
umull
umlal
smull
smlal

