
COMP3221 lec-11-mem-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 11: Memory Access - I

http://www.cse.unsw.edu.au/~cs3221

August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec-11-mem-I.2 Saeid Nooshabadi

Overview

° Memory Access in Assembly

° Data Structures in Assembly

COMP3221 lec-11-mem-I.3 Saeid Nooshabadi

Review:Instruction Set (ARM 7TDMI)

° Set of instruction that a
processor can execute

° Instruction Categories
• Data Processing or

Computational (Logical and
Arithmetic

• Load/Store (Memory Access:
or transferring data between
memory and registers)

• Control Flow (Jump and
Branch)

• Floating Point

- coprocessor

• Memory Management

• Special

Registers

COMP3221 lec-11-mem-I.4 Saeid Nooshabadi

Review: ARM Instructions So far
add, sub,mov
and,bic, orr, eor
Data Processing Instructions with
shift and rotate
lsl, lsr, asr, ror
Multiplications
mul, mla,umull, umlal, smull,
smlal

COMP3221 lec-11-mem-I.5 Saeid Nooshabadi

Assembly Operands: Memory

° C variables map onto registers; what about
large data structures like arrays?

° 1 of 5 components of a computer: memory
contains such data structures

° But ARM arithmetic instructions only operate
on registers, never directly on memory.

° Data transfer instructions transfer data
between registers and memory:

• Memory to register

• Register to memory

COMP3221 lec-11-mem-I.6 Saeid Nooshabadi

Data Transfer: Memory to Reg (#1/4)

° To transfer a word of data, we need to
specify two things:

• Register: specify this by number (r0 – r15)

• Memory address: more difficult

- Think of memory as a single one-
dimensional array, so we can address it
simply by supplying a pointer to a memory
address.

- Other times, we want to be able to offset
from this pointer.arr[0]

arr[1]
arr[2]
arr[3]
arr[4]

COMP3221 lec-11-mem-I.7 Saeid Nooshabadi

Data Transfer: Memory to Reg (#2/4)

° To specify a memory address to copy from,
specify two things:

• A register which contains a pointer to memory

• A numerical offset (in bytes), or a register which contain
an offset

° The desired memory address is the sum of
these two values.

° Example:[v1, #8]
• specifies the memory address pointed to by the value in
v1, plus 8 bytes

° Example:[v1, v2]
• specifies the memory address pointed to by the value in
v1, plus v2

COMP3221 lec-11-mem-I.8 Saeid Nooshabadi

Data Transfer: Memory to Reg (#3/4)

° Load Instruction Syntax:
1 2, [3, 4]

• where

1) operation name

2) register that will receive value

3) register containing pointer to memory

4) numerical offset in bytes, or another shifted index
register

° Instruction Name:
•ldr (meaning Load register, so 32 bits or one word are

loaded at a time from memory to register)

COMP3221 lec-11-mem-I.9 Saeid Nooshabadi

Data Transfer: Memory to Reg (#4/4)
° Example:ldr a1, [v1, #8]

This instruction will take the pointer in v1, add 8 bytes to it, and
then load the value from the memory pointed to by this
calculated sum into register a1

° Notes:
•v1 is called the base register
• 8 is called the offset
• offset is generally used in accessing elements of array: base reg

points to beginning of array
° Example:ldr a1, [v1, v2]

This instruction will take the pointer in v1, add an index offset in
register v2 to it, and then load the value from the memory
pointed to by this calculated sum into register a1

° Notes:
•v1 is called the base register
•v2 is called the index register
• index is generally used in accessing elements of array using an

variable index: base reg points to beginning of array

arr[0]
arr[1]
arr[2]
arr[3]

25
#8

COMP3221 lec-11-mem-I.10 Saeid Nooshabadi

Data Transfer: Other Mem to Reg Variants (#1/2)
° Pre Indexed Load Example:

ldr a1, [v1,#12]!
This instruction will take the pointer in v1, add 12 bytes to

it, and then load the value from the memory pointed to by
this calculated sum into register a1.

Subsequently, v1 is updates by computed sum of v1 and
12, (v1 v1 + 12).

° Pre Indexed Load Example:

ldr a1, [v1, v2]!
This instruction will take the pointer in v1, add an index
offset in register v2 to it, and then load the value from the
memory pointed to by this calculated sum into register a1.

Subsequently, v1 is updated by computed sum of v1 and v2,
(v1 v1 + v2).

COMP3221 lec-11-mem-I.11 Saeid Nooshabadi

Data Transfer: Other Mem to Reg Variants (#2/2)
° Post Indexed Load Example:

ldr a1, [v1], #12
This instruction will load the value from the memory pointed
to by value in register v1 into register a1.

Subsequently, v1 is updates by computed sum of v1 and 12,
(v1 v1 + 12).

° Example:ldr a1, [v1], v2
This instruction will load the value from the memory pointed
by value in register v1, into register a1.

Subsequently, v1 is updated by computed sum of v1 and v2,
(v1 v1 + v2).

COMP3221 lec-11-mem-I.12 Saeid Nooshabadi

Data Transfer: Reg to Memory (1/2)

° Also want to store value from a register into
memory

° Store instruction syntax is identical to Load
instruction syntax

° Instruction Name:

str (meaning Store from Register, so 32 bits
or one word are stored from register to
memory at a time)

COMP3221 lec-11-mem-I.13 Saeid Nooshabadi

Data Transfer: Reg to Memory (2/2)

° Example:str a1,[v1, #12]
This instruction will take the pointer in v1, add 12 bytes to
it, and then store the value from register a1 into the
memory address pointed to by the calculated sum

° Example:str a1,[v1, v2]
This instruction will take the pointer in v1, adds register v2
to it, and then store the value from register a1 into the
memory address pointed to by the calculated sum.

COMP3221 lec-11-mem-I.14 Saeid Nooshabadi

Data Transfer: Other Reg to Mem Variants (#1/2)

° Pre Indexed Store Example:

str a1, [v1,#12]!
This instruction will take the pointer in v1, add 12 bytes to it,
and then store the value from register a1 into the memory
address pointed to by the calculated sum.

Subsequently, v1 is updates by computed sum of v1 and 12,
(v1 v1 + 12).

° Pre Indexed Store Example:

str a1,[v1, v2]!
This instruction will take the pointer in v1, adds register v2 to
it, and then store the value from register a1 into the memory
address pointed to by the calculated sum.

Subsequently, v1 is updated by computed sum of v1 and v2 (
v1 v1 + v2).

COMP3221 lec-11-mem-I.15 Saeid Nooshabadi

Data Transfer: Other Reg to Mem Variants (#2/2)

° Post Indexed Store Example:

str a1, [v1],#12
This instruction will store the value from register a1 into the
memory address pointed to by register v1.

Subsequently, v1 is updates by computed sum of v1 and 12,
(v1 v1 + 12).

° Post Indexed Store Example:

str a1,[v1], v2
This instruction will store the value from register a1 into the
memory address pointed to by register v1.

Subsequently, v1 is updated by computed sum of v1 and v2,
(v1 v1 + v2).

COMP3221 lec-11-mem-I.16 Saeid Nooshabadi

Pointers v. Values

° Key Concept: A register can hold any 32-bit
value. That value can be a (signed) int, an unsigned int, a pointer (memory
address), etc.

° If you write add v3,v2,v1
then v1 and v2
better contain values

° If you write ldr a1,[v1]
then v1 better contain a pointer

° Don’t mix these up!

COMP3221 lec-11-mem-I.17 Saeid Nooshabadi

Addressing: Byte vs. halfword vs. word
° Every word in memory has an address, similar to an index

in an array

° Early computers numbered words like C numbers
elements of an array:
•Memory[0], Memory[1], Memory[2], …

° Computers needed to access 8-bit bytes, half
words (2 bytes/halfword) as well as words (4
bytes/word)

° Today machines address memory as bytes, hence
• Half word addresses differ by 2
Memory[0], Memory[2], Memory[4], …
• word addresses differ by 4
Memory[0], Memory[4], Memory[8], …

Called the “address” of a word

COMP3221 lec-11-mem-I.18 Saeid Nooshabadi

Compilation with Memory
° What offset in ldr to select my_Array[8] in C?

° 4x8=32 to select my_Array[8]: byte v. word

° Compile by hand using registers:g = h + my_Array[8];
• g: v1, h: v2, v3: base address of my_Array

° 1st transfer from memory to register:

ldr v1, [v3,#32] ; v1 gets my_Array[8]
• Add 32 to v3 to select my_Array[8], put into v1

° Next add it to h and place in gadd v1,v2,v1 ; v1 = h+ my_Array[8]

COMP3221 lec-11-mem-I.19 Saeid Nooshabadi

Same thing in pictures

v1
v2
v3

g
h

my_Array[0]

0

0xFFFFFFFF

my_Array[8]

my_Array
°ldr v1, [v3,#32]

Adds offset “8 x 4 = 32” to
select my_Array[8], and
puts into a1

°The value in register v3 is an
address

°Think of it as a pointer into
memory

°v3 contains the address of
the Base of the my_Array .

°add v1, v2,v1
The value in register
v1 is the sum of v2
and v1.

v1 + v2

32

COMP3221 lec-11-mem-I.20 Saeid Nooshabadi

Compile with variable index
° What if array index not a constant?g = h + my_Array[i];

• g: v1, h: v2, i: v3,
v4: base address of my_Array

° To load my_Array[i] into a register, first turn i
into a byte address; multiply by 4

° How multiply using adds?
• i + i = 2i, 2i + 2i = 4i

mov a1,v3 ; a1 = i
add a1,a1 ; a1 = 2*i
add a1,a1 ; a1 = 4*i

Better alternative: mov a1, v3, lsl #2

COMP3221 lec-11-mem-I.21 Saeid Nooshabadi

Compile with variable index, con’t

° Now load my_Array[i]= my_Array[0] + 4*i
into v1 register:

ldr v1, [v4, a1] ;v1= my_Array[i]
° Finally add to h to it and put sum in g:

add v1,v1, v2 ;g = h + my_Array[i]

COMP3221 lec-11-mem-I.22 Saeid Nooshabadi

Compile with variable index: Summary
° C statement:

g = h + my_Array[i];
° Compiled ARM assembly instructions:
mov a1, v3, lsl #2 ; a1 = 4*i

ldr v1, [v4, a1] ;v1= my_Array[i]

° Finally add to h to it and put sum in g:

add v1,v1, v2 ;g = h + my_Array[i]

Base Reg Index Reg

COMP3221 lec-11-mem-I.23 Saeid Nooshabadi

Compile with variable index Example

° Compile this into ARM code:

B_Array[i] = h + A_Array[i];
• h: v1, i:v2, v3:base address of A_Array,
v4:base address of B_Array

COMP3221 lec-11-mem-I.24 Saeid Nooshabadi

Compile with variable index Example (Solution)

°Compile this C code into ARM:

B_Array[i] = h + A_Array[i];
• h: v1, i:v2, v3:base address of A_Array, v4:base

address of B_Array
mov a1, v2, lsl #2 ;a1 = 4*i
ldr a2, [v3, a1] ; v4 + a1 =

;addrB_Array[i]
;a2= A_array[i]

add a2, a2, v1 ;a2 = h + A_Array[i];
str a2, [v4, a1] ;v4 + a1 =

;addrB_Array[i]
;B_Array[i]= a2

Base Reg Index Reg

COMP3221 lec-11-mem-I.25 Saeid Nooshabadi

COMP3221 Reading Materials (Week #4)
° Week #4: Steve Furber: ARM System On-Chip; 2nd Ed,

Addison-Wesley, 2000, ISBN: 0-201-67519-6. We use
chapters 3 and 5

° ARM Architecture Reference Manual –On CD ROM

COMP3221 lec-11-mem-I.26 Saeid Nooshabadi

Notes about Memory

° Pitfall: Forgetting that sequential word
addresses in machines with byte
addressing do not differ by 1.

• Many an assembly language programmer has toiled over
errors made by assuming that the address of the next
word can be found by incrementing the address in a
register by 1 instead of by the word size in bytes.

• So remember that for both ldr and str, the sum of the
base address and the offset must be a multiple of 4 (to be
word aligned)

COMP3221 lec-11-mem-I.27 Saeid Nooshabadi

More Notes about Memory: Alignment (#1/2)

3 2 1 0

Aligned

Not
Aligned

° ARM requires that all words start at addresses
that are multiples of 4 bytes

° Called Alignment: objects must fall on address
that is multiple of their size.

° Some machines like Intel allow non-aligned
accesses

COMP3221 lec-11-mem-I.28 Saeid Nooshabadi

More Notes about Memory: Alignment (#2/2)
° Non-Aligned memory access causes byte

rotation in right direction within the word
0 1 2 3

0x80 09 82 a2 2e
0x83 0x82 0x81 0x80

ldr a1, 0x80 a1 = 0x0982a22e
ldr a1, 0x81 a1 = 0x2e0982a2
ldr a1, 0x82 a1 = 0xa22e0982
ldr a1, 0x83 a1 = 0x82a22e09

COMP3221 lec-11-mem-I.29 Saeid Nooshabadi

Role of Registers vs. Memory
° What if more variables than registers?

• Compiler tries to keep most frequently used variable in
registers

• Writing less common to memory: spilling

° Why not keep all variables in memory?
• Smaller is faster:

registers are faster than memory

• Registers more versatile:

- ARM Data Processing instructions can read 2,
operate on them, and write 1 per instruction

- ARM data transfer only read or write 1 operand per
instruction, and no operation

COMP3221 lec-11-mem-I.30 Saeid Nooshabadi

“And in Conclusion…” (#1/2)

° In ARM Assembly Language:
• Registers replace C variables

• One Instruction (simple operation) per line

• Simpler is Better

• Smaller is Faster

° Memory is byte-addressable, but ldr and str
access one word at a time.

° A pointer (used by ldr and str) is just a
memory address, so we can add to it or
subtract from it (using offset).

° Word Addresses n Memory should be word
aligned

COMP3221 lec-11-mem-I.31 Saeid Nooshabadi

“And in Conclusion…”(#2/2)
° New Instructions:

ldr, str

