
COMP3221 lec-12-mem-II.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 12: Memory Access - II

http://www.cse.unsw.edu.au/~cs3221

August, 2003
Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec-12-mem-II.2 Saeid Nooshabadi

Overview

° Word/ Halfword/ Byte Addressing
° Byte ordering
° Signed Load Instructions
° Instruction Support for Characters

COMP3221 lec-12-mem-II.3 Saeid Nooshabadi

Review: Assembly Operands: Memory

° C variables map onto registers; what about
large data structures like arrays?

° 1 of 5 components of a computer: memory
contains such data structures

° But ARM arithmetic instructions only operate
on registers, never directly on memory.

° Data transfer instructions transfer data
between registers and memory:

• Memory to register
• Register to memory

COMP3221 lec-12-mem-II.4 Saeid Nooshabadi

Review: Data Transfer: Memory Reg
° Example:ldr a1, [v1, #8]
° Example:ldr a1, [v1, v2]
°Example: ldr a1, [v1,#12]!
Pre Indexed Load: Subsequently, v1 is updates by computed sum
of v1 and 12, (v1 v1 + 12).

°Example: ldr a1, [v1, v2]!
Pre Indexed Load: Subsequently, v1 is updates by computed sum
of v1 and 12, (v1 v1 + v2).

°Example: ldr a1, [v1],#12
Post Indexed Load: Subsequently, v1 is updates by computed
sum of v1 and 12, (v1 v1 + 12).
°Example: ldr a1, [v1], v2
Post Indexed Load: Subsequently, v1 is updates by computed
sum of v1 and 12, (v1 v1 + v2).

Similar instructions
For STR

COMP3221 lec-12-mem-II.5 Saeid Nooshabadi

Review: Memory Alignment

3 2 1 0
Aligned

Not
Aligned

° ARM requires that all words start at addresses
that are multiples of 4 bytes

° Called Alignment: objects must fall on address
that is multiple of their size.

° Some machines like Intel allow non-aligned
accesses

COMP3221 lec-12-mem-II.6 Saeid Nooshabadi

Data Transfer: More Mem to Reg Variants (#1/2)
° Load Byte Example:

ldrb a1, [v1,#12]
This instruction will take the pointer in v1, add

12 bytes to it, and then load the byte value
from the memory pointed to by this
calculated sum into register a1.

° Load Byte Example:
ldrb a1, [v1, v2]
This instruction will take the pointer in v1,
add an index offset in register v2 to it, and
then load the byte value from the memory
pointed to by this calculated sum into
register a1.

1 word = 4 Bytes

v1
a1 0 0 0

+12

COMP3221 lec-12-mem-II.7 Saeid Nooshabadi

Data Transfer: More Mem to Reg Variants (#2/2)
° Load Half Word Example:

ldrh a1, [v1,#12]
This instruction will take the pointer in v1, add

12 bytes to it, and then load the half word
value from the memory pointed to by this
calculated sum into register a1.

° Load Byte Example:
ldrh a1, [v1, v2]
This instruction will take the pointer in v1,
add an index offset in register v2 to it, and
then load the half word value from the
memory pointed to by this calculated sum
into register a1.

1 word = 4 Bytes

v1
a1 0 0 0

+12

COMP3221 lec-12-mem-II.8 Saeid Nooshabadi

Data Transfer: More Reg to Mem Variants (#1/2)
° Store Byte Example:

strb a1, [v1,#12]
This instruction will take the
pointer in v1, add 12 bytes to it,
and then store the value from
lsb Byte of register a1 into the
memory address pointed to by
the calculated sum.

° Store Byte Example:
strb a1,[v1, v2]
This instruction will take the
pointer in v1, adds register v2 to
it, and then store the value from
lsb Byte of register a1 into the
memory address pointed to by
the calculated sum.

1 word = 4 Bytes

v1
a1

+12

COMP3221 lec-12-mem-II.9 Saeid Nooshabadi

Data Transfer: More Reg to Mem Variants (#2/2)
° Store Half Word Example:

strh a1, [v1,#12]
This instruction will take the
pointer in v1, add 12 bytes to it,
and then store the value from
half word of register a1 into the
memory address pointed to by
the calculated sum.

° Store Half Word Example:

strh a1,[v1, v2]
This instruction will take the
pointer in v1, adds register v2 to it,
and then store the value from half
word of register a1 into the
memory address pointed to by the
calculated sum.

1 word = 4 Bytes

v1
a1 0

+12

COMP3221 lec-12-mem-II.10 Saeid Nooshabadi

Compilation with Memory (Byte Addressing)
° What offset in ldr to select my_Array[8]

(defined as Char) in C?
° 1x8=8 to select my_Array[8]: byte

° Compile by hand using registers:g = h + my_Array[8];
• g: v1, h: v2, v3:base address of my_Array

° 1st transfer from memory to register:
ldrb v1, [v3,#8] ; v1 gets my_Array[8]

• Add 8 to r3 to select my_Array[8], put into v1
° Next add it to h and place in gadd v1,v2,v1 ; v1 = h+ my_Array[8]

COMP3221 lec-12-mem-II.11 Saeid Nooshabadi

Compilation with Memory (half word Addressing)
° What offset in ldr to select my_Array[8] (defined

as halfword) in C?
° 2x8=16 to select my_Array[8]: byte

° Compile by hand using registers:g = h + my_Array[8];
• g: v1, h: v2, v3:base address of my_Array

° 1st transfer from memory to register:
ldrh v1, [v3, #16] ; v1 gets my_Array[8]

• Add 16 to r3 to select my_Array[8], put into v1
° Next add it to h and place in gadd v1,v2,v1 ; v1 = h+ my_Array[8]

COMP3221 lec-12-mem-II.12 Saeid Nooshabadi

More Notes about Memory: Word
° How are bytes numbered in a word?

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

‘P’
’M’
‘O’
‘C’
‘1’
‘2’
‘2’
‘3’

100
101
102
103
104
105
106
107

“COMP”

“3221”

‘C’
‘O’
’M’
‘P’
‘3’
‘2’
‘2’
‘1’

100
101
102
103
104
105
106
107

•Gulliver’s Travels: Which end of egg to open?
Cohen, D. “On holy wars and a plea for peace (data transmission).”
Computer, vol.14, (no.10), Oct. 1981. p.48-54.
•Little Endian address of least significant byte: Intel
80x86, DEC Alpha,
•Big Endian address of most significant byte
HP PA, IBM/Motorola PowerPC, SGI, Sparc
•ARM is Little Endian by default, However it can be
made Big Endian by configuration.

COMP3221 lec-12-mem-II.13 Saeid Nooshabadi

Endianess Example

r0 = 0x11223344
31 24 23 16 15 8 7 0

11 22 33 44

Little-endian

r1 = 0x100
31 24 23 16 15 8 7 0

11 22 33 44

31 24 23 16 15 8 7 0

00 00 00 44
r2 = 0x44

31 24 23 16 15 8 7 0

00 00 00 11
r2 = 0x11

LDRB r2, [r1] Big-endian

31 24 23 16 15 8 7 0

44 33 22 11 r1 = 0x100

STR r0, [r1]

Memory

COMP3221 lec-12-mem-II.14 Saeid Nooshabadi

Code Example
° Write a segment of code that add together

elements x to x+(n-1) of an array, where the
element x = 0 is the first element of the array.

° Each element of the array is word sized (ie. 32
bits).

° The segment should use post-indexed addressing.
° At the start of your segments, you should assume

that:
• a1 points to the start of the array.
• a2 = x
• a3 = n

a1

x + (n - 1)

x + 1
x

Elements

{n elements

0

COMP3221 lec-12-mem-II.15 Saeid Nooshabadi

Code Example: Sample Solution
add a1, a1, a2, lsl #2 ; Set a1 to address ; of element x
add a3, a1, a3, lsl #2 ; Set a3 to address

; of element x +(n-1)
mov a2, #0 ; Initialise

;accumulatorLoop:
ldr a4, [a1], #4 ; Access element and

; move to next
add a2, a2, a4 ; Add contents to

; counter
cmp a1, a3 ; Have we reached

; element x+n?
blt loop ; If not - repeat

; for next element
; on exit sum
; contained in a2 COMP3221 lec-12-mem-II.16 Saeid Nooshabadi

Sign Extension and Load Byte & Load Half Word
° ARM instruction (ldrsb) automatically

extends “sign” of byte for load byte.

012345678931
SSSS SSSSSSSSSSSSSSSSSSSS S

S
° ARM instruction (ldrsh) automatically

extends “sign” of half word for load half word.

012345678931
SSSSSSSSSSSSSSSSS

S

15
ldrsh a1, [v1,#12] ldrsh a1, [v1,v2]

ldrsb a1, [v1,#12] ldrsb a1, [v1,v2]

COMP3221 lec-12-mem-II.17 Saeid Nooshabadi

Instruction Support for Characters
° ARM (and most other instruction sets)

include instructions to operate on bytes:
• move byte (ldrb) loads a byte from memory/reg, placing it in

rightmost 8 bits of a register, or vice versa

° Declares byte variables in C as “char”
° Assume x, y are declared char. x in memory at [v1,#4]and y at [v1,#0].

What is ARM code for x = y; ?
ldrb a1, [v1,#0]
strb a1, [v1,#4] ; transfer y to x

COMP3221 lec-12-mem-II.18 Saeid Nooshabadi

Strings in C: Example
° String simply an array of charvoid strcpy (char x[], char y[]){int i = 0; /* declare,initialize i*/
while ((x[i] = y[i]) != ’\0’) /* 0 */ i = i + 1; /* copy and test byte */ }

° function
i, addr. of x[0], addr. of y[0]: v1, a1, a2 , func

ret addr. :lr
strcpy:mov v1, #-1 ; i = -1L1: add v1, v1, #1 ; i =i + 1ldrb a3, [a2,v1] ; a1= y[i]strb a3, [a1,v1] ; x[i]=y[i] cmp a3, #0bne L1 ; y[i]!=0;goto L1 mov pc, lr ; return

COMP3221 lec-12-mem-II.19 Saeid Nooshabadi

Strings in C: Example using pointers
° String simply an array of charvoid strcpy2 (char *px, char *py){
while ((*px++ = *py++) != ’\0’) /* 0 */; /* copy and test byte */ }

° function
addr. of x[0], addr. of y[0]: v2, v3 func ret addr.:lr
strcpy:
L1: ldrb a1, [v3],#1 ;a1= *py, py = py +1

strb a1, [v2],#1 ;*px = *py, px = px +1
cmp a1, #0
bne L1 ; py!=0 goto L1
mov pc, lr ; return

° ideally compiler optimizes code for you

COMP3221 lec-12-mem-II.20 Saeid Nooshabadi

Block Copy Transfer (#1/5)
° Consider the following code:

str a1, [v1],#4
str a2, [v1],#4
str a3, [v1],#4
str a4, [v1],#4

v1
v1

v1

v1

Replace this withstmia v1!, {a1-a4}
STMIA : SORE MULTIPLE INCREMENT AFTER

v1

° Consider the following code:str a1, [v1, #4]!
str a2, [v1, #4]!
str a3, [v1, #4]!
str a4, [v1, #4]!
Replace this with
stmib v1!, {a1-a4}
STMIB : SORE MULTIPLE INCREMENT BEFORE

a1
a2

a3
a4

v1

v1

v1
v1
v1

a1
a2

a3
a4

0x100
0x104
0x108
0x112

0x100
0x104
0x108
0x112

COMP3221 lec-12-mem-II.21 Saeid Nooshabadi

Block Copy Transfer (#2/5)
° Consider the following code:

str a1, [v1],#-4
str a2, [v1],#-4
str a3, [v1],#-4
str a4, [v1],#-4 v1

v1

v1

v1

Replace this withstmda v1!, {a1-a4}
STMDA : SORE MULTIPLE DECREMENT AFTER

v1

° Consider the following code:str a1, [v1, #-4]!
str a2, [v1, #-4]!
str a3, [v1, #-4]!
str a4, [v1, #-4]!
Replace this with
stmdb v1!, {a1-a4}
STMDB : SORE MULTIPLE DECREMENT BEFORE

a1

a2
a3
a4

v1

v1

v1

v1
v1

a1

a2
a3

a4

0x100
0x104
0x108
0x112

0x100
0x104
0x108
0x112

COMP3221 lec-12-mem-II.22 Saeid Nooshabadi

Block Copy Transfer (#3/5)
° Consider the following code:str a1, [v1]

str a2, [v1,#4]
str a3, [v1,#8]
str a4, [v1,#12]

v1
v1

v1

v1

Replace this withstmia v1, {a1-a4}
STMIA : SORE MULTIPLE INCREMENT AFTER

° Consider the following code:str a1, [v1, #4]
str a2, [v1, #8]
str a3, [v1, #12]
str a4, [v1, #16]
Replace this with
stmib v1, {a1-a4}
STMIB : SORE MULTIPLE INCREMENT BEFORE

a1
a2

a3
a4

v1

v1

v1
v1
v1

a1
a2

a3
a4

v1

v1

0x100
0x104
0x108
0x112

0x100
0x104
0x108
0x112

COMP3221 lec-12-mem-II.23 Saeid Nooshabadi

Block Copy Transfer (#4/5)
° Consider the following code:

str a1, [v1]
str a2, [v1,#-4]
str a3, [v1,#-8]
str a4, [v1,#-12] v1

v1

v1

v1

Replace this withstmda v1, {a1-a4}
STMDA : SORE MULTIPLE DECREMENT AFTER

° Consider the following code:str a2, [v1,#-4]
str a3, [v1,#-8]
str a4, [v1,#-12]
str a1, [v1,#16]
Replace this with
stmdb v1, {a1-a4,}
STMDB : SORE MULTIPLE DECREMENT BEFORE

a1

a2
a3
a4

v1

v1

v1

v1
v1

a1

a2
a3

a4

v1

v1

0x100
0x104
0x108
0x112

0x100
0x104
0x108
0x112

COMP3221 lec-12-mem-II.24 Saeid Nooshabadi

Block Data Transfer (#5/5)

° Similarly we have
• LDMIA : Load Multiple Increment After
• LDMIB : Load Multiple Increment Before
• LDMDA : Load Multiple Decrement After
• LDMDB : Load Multiple Decrement Before

For details See Chapter 3, page 61 – 62
Steve Furber: ARM System On-Chip; 2nd Ed,
Addison-Wesley, 2000, ISBN: 0-201-67519-6.

COMP3221 lec-12-mem-II.25 Saeid Nooshabadi

COMP3221 Reading Materials (Week #4)
° Week #4: Steve Furber: ARM System On-Chip; 2nd Ed,

Addison-Wesley, 2000, ISBN: 0-201-67519-6. We use
chapters 3 and 5

° ARM Architecture Reference Manual –On CD ROM

COMP3221 lec-12-mem-II.26 Saeid Nooshabadi

“And in Conclusion…” (#1/2)

° In ARM Assembly Language:
• Registers replace C variables
• One Instruction (simple operation) per line
• Simpler is Better
• Smaller is Faster

° Memory is byte-addressable, but ldr and str
access one word at a time.

° Access byte and halfword using ldrb, ldrh,ldrsb and ldrsh
° A pointer (used by ldr and str) is just a

memory address, so we can add to it or
subtract from it (using offset).

COMP3221 lec-12-mem-II.27 Saeid Nooshabadi

“And in Conclusion…”(#2/2)
° New Instructions:

ldr, str
ldrb, strb
ldrh, strh
ldrsb, ldrsh

