
COMP3221 lec13-decision-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 13: Making Decisions
in C/Assembly Language - I

http://www.cse.unsw.edu.au/~cs3221

August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec13-decision-I.2 Saeid Nooshabadi

Review (#1/2)
° Big idea in CS&E; compilation to translate

from one level of abstraction to lower level
• Generally single HLL statement produces many assembly

instructions

• Also hides address calculations (byte vs. word addressing)

° Design of an Assembly Language like ARM
shaped by
1) Desire to keep hardware simple:

e.g., most operations have 3 operands

2) Smaller is faster:
e.g., ARM has 16 registers

COMP3221 lec13-decision-I.3 Saeid Nooshabadi

Review (#2/2)
° ARM assembly language thus far:

• Instructions: add,sub,mov, orr,and,bic, eor, mul,
•ldr, str At most one assembly instruction per line

• Comments start with; to end of line

• Operands: registers
r0 – r3 a1 – a4
(correspond to C functions arguments. Used for scratch pad too!)
r4 – r10 v1 – v7
(correspond to function variables)

• Operands: memory Memory[0], Memory[4], Memory[8],
,... , Memory[4294967292]

COMP3221 lec13-decision-I.4 Saeid Nooshabadi

Baby Quiz
° What are the three different ways to obtain a

data operand you have seen?

° Immediate - data is IN the instruction
• add r1, r1, #24

° Register Direct - data is IN a register
• the register number is in the instruction

• add r1, r1, r2

° Base plus offset - data is IN memory
• the register number is in the instruction

• the base address is in the register

• the offset is in the instruction/offset index register number in
instruction

• ldr r1, [r2, #24] / ldr r1, [r2,r3]

• These are called Addressing Modes

COMP3221 lec13-decision-I.5 Saeid Nooshabadi

Overview

° C/Assembly if, goto, if-else
° C /Assembly Loops: goto, while
° Test for less Than, Greater Than, etc

° C/Assembly case/switch statement

° Conclusion

COMP3221 lec13-decision-I.6 Saeid Nooshabadi

C Decisions (Control Flow): if statements

° 2 kinds of if statements in C
•if (condition) statement

•if (condition) statement1 else statement2

° Following code is same as 2nd if
if (condition) goto L1;

statement2;
goto L2;

L1: statement1;
L2:

• Not as elegant as if-else, but same meaning

COMP3221 lec13-decision-I.7 Saeid Nooshabadi

ARM decision instructions (control flow) (#1/2)

° Decision instruction in ARM:
•cmp register1, register2 ;compare register1 with

; register2
•beq L1 ; branch to L1 if equal
is “Branch if (registers are) equal”

Same meaning as C:
• if (register1==register2) goto L1

° Complementary ARM decision instruction
•cmp register1, register2
•bne L1
•bne is “Branch if (registers are) not equal”

Same meaning as C:
if (register1!=register2) goto L1

° Called conditional branches

COMP3221 lec13-decision-I.8 Saeid Nooshabadi

ARM decision instructions (control flow) (#2/2)

° Decision instruction in ARM:
•cmp register1, #immediate ;compare register1 with

; immediate number
•beq L1 ; branch to L1 if equal
• is “Branch if (register and immediate are) equal”

Same meaning as C:
• if (register1==#immediate) goto L1

° Complementary ARM decision instruction
•cmp register1, #immediate
•bne L1
•bne is “Branch if (register and immediate are) not equal”

Same meaning as C:
if (register1!=#immediate) goto L1

° Called conditional branches

COMP3221 lec13-decision-I.9 Saeid Nooshabadi

Compiling C if into ARM Assembly

° Compile by hand
if (i == j) f=g+h;
else f=g-h;
Mapping f: v1, g: v2,
h: v3, i: v4, j: v5

° Start with branch:cmp v4, v5beq L-true ; branch to L-True
; if i==j

° Follow with false partsub v1,v2,v3 ; f=g-h

exit

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == j

COMP3221 lec13-decision-I.10 Saeid Nooshabadi

Compiling C if into ARM Assembly

° Need instruction that always transfers control
to skip over true part
• ARM has branch: b label ; goto “label”

sub v1,v2,v3 ; f=g-h
b L-exit

° Next is true part
L-true: add v1,v2,v3 ; f=g+h

° Followed by exit branch label
L-exit:

COMP3221 lec13-decision-I.11 Saeid Nooshabadi

Compiling C if into ARM: Summary

°Compile by hand
if (i == j) f=g+h;
else f=g-h;
Mapping f: v1, g: v2,
h: v3, i: v4, j: v5

cmp v4,v5 beq L-true ; branch i==jsub v1,v2,v3 ; (false)b L-exit ; go to ExitL-true: add v1,v2,v3 ;(true)L-exit:
° Note:Compiler supplies labels for branches not
found in HLL code; often it flips the condition to
branch to false part

i == j?

f=g+h f=g-h

(false)
i != j

(true)
i == jC

A
R
M

COMP3221 lec13-decision-I.12 Saeid Nooshabadi

Motoring with Microprocessors
° Thanks to the magic of microprocessors and embedded systems,

our cars are becoming safer, more efficient, and entertaining.

° The average middle-class household includes over 40 embedded
processors. About half are in the garage. Cars make a great
vehicle for deploying embedded processors in huge numbers.
These processors provide a ready source of power, ventilation,
and mounting space and sell in terrific quantities.

° How many embedded processors does your car have?

° If you've got a late-model luxury sedan, two or three processors
might be obvious in the GPS navigation system or the automatic
distance control. Yet you'd still be off by a factor of 25 or 50. The
current 7-Series BMW and S-class Mercedes boast about 100
processors apiece. A relatively low-profile Volvo still has 50 to 60
baby processors on board. Even a boring low-cost econobox has a
few dozen different microprocessors in it.

° Your transportation appliance probably has more chips than your
Internet appliance.

° New cars now frequently carry 200 pounds of electronics and
more than a mile of wiring.

http://www.embedded.com/

COMP3221 lec13-decision-I.13 Saeid Nooshabadi

COMP3221 Reading Materials (Week #5)
° Week #5: Steve Furber: ARM System On-Chip; 2nd Ed,

Addison-Wesley, 2000, ISBN: 0-201-67519-6. We use
chapters 3 and 5

° ARM Architecture Reference Manual –On CD ROM

° A copy of the article by Cohen, D. “On holy wars and a plea
for peace (data transmission).” Computer, vol.14, (no.10),
Oct. 1981. p.48-54, is place on the class website.

COMP3221 lec13-decision-I.14 Saeid Nooshabadi

Loops in C/Assembly

° Simple loop in C

Loop: g = g + A[i];i = i + j;if (i != h) goto Loop;
° (g,h,i,j:v2,v3,v4,v5; base of A[]:v6):

° 1st fetch A[i]
Loop: ldr a1,[v6, v4, lsl #2];(v6+v4*4)=addr A[i] ;a1=A[i]

COMP3221 lec13-decision-I.15 Saeid Nooshabadi

Simple Loop (cont)

° Add value of A[i] to g and then j to ig = g + a1i = i + j;
° (g,h,i,j:v2,v3,v4,v5):

add v2,v2,a1 ; g = g+A[i]add v4,v4,v5 ; i = i + j
The final instruction branches back to Loop if i != h :

cmp v4,v3 bne Loop ; goto Loop
; if i!=h

COMP3221 lec13-decision-I.16 Saeid Nooshabadi

Loops in C/Assembly: Summary

Loop: g = g + A[i];i = i + j;if (i != h) goto Loop;
° (g,h,i,j:v2,v3,v4,v5; base of A[]:v6):

Loop: ldr a1,[v6, v4, lsl #2];(v6+v4*4)=addr A[i] ;a1=A[i]add v2,v2,a1 ; g = g+A[i]
add v4,v4,v5 ; i = i + jcmp v4,v3 bne Loop ; goto Loop

; if i!=h

C

A
R
M

COMP3221 lec13-decision-I.17 Saeid Nooshabadi

while in C/Assembly:
° Although legal C, almost never write loops with if, goto: use while, or for loops

° Syntax: while(condition) statement

while (save[i] == k) i = i + j;
° 1st load save[i] into a scratch register (i,j,k: v4,v5,v6: base of save[]:v7):

Loop: ldr a1,[v7,v4,lsl #2]
;v7+v4*4=addr of save[i]
;a1=save[i]

COMP3221 lec13-decision-I.18 Saeid Nooshabadi

While in C/Assembly (cont)

° Loop test: exit if save[i] != k
(i,j,k: v4,v5,v6: base of save[]:v7)

cmp a1,v6bne Exit ;goto Exit
;if save[i]!=k

° The next instruction adds j to i:

add v4,v4,v5 ; i = i + j
° End of loop branches back to the while test at

top of loop. Add the Exit label after:

b Loop ; goto LoopExit:

COMP3221 lec13-decision-I.19 Saeid Nooshabadi

While in C/Assembly: Summary

while (save[i]==k) i = i + j;
(i,j,k: v4,v5,v6: base of save[]:v7)

Loop: ldr a1,[v7,v4,lsl #2]
;v7+v4*4=addr of save[i]
;a1=save[i]cmp a1,v6bne Exit ;goto Exit

;if save[i]!=kadd v4,v4,v5 ; i = i + jb Loop ; goto LoopExit:

C

A
R
M

COMP3221 lec13-decision-I.20 Saeid Nooshabadi

Beyond equality tests in ARM Assembly (#1/2)

° So far ==, != , What about < or >?
•cmp register1, register2
•blt L1
is “Branch if (register1 <register2)

Same meaning as C:
• if (register1<register2) go to L1

° Complementary ARM decision instruction
•cmp register1, register2
•bge L1
•bge is “Branch if (register1 >= register2) ”

Same meaning as C:
if (register1>=register2) go to L1

COMP3221 lec13-decision-I.21 Saeid Nooshabadi

Beyond equality tests in ARM Assembly (#2/2)

° Also
•cmp register1, #immediate
•blt L1
is “Branch if (register1 <#immediate)

Same meaning as C:
• if (register1<immediate) go to L1

° Complementary ARM decision instruction
•cmp register1, #immediate
•bge L1
•bge is “Branch if (register1 >= #immediate) ”

Same meaning as C:
if (register1>=immediate) go to L1

COMP3221 lec13-decision-I.22 Saeid Nooshabadi

If less_than in C/Assembly

if (g < h) { ... }
cmp v1,v2 ; v1<v2 (g<h)
blt Less ; if (g < h)b noLess ; if (g >= h) Less:
...

noLess:

Alternative Code

cmp v1,v2 ; v1<v2 (g<h)bge noLess ; if (g >= h)
... ; if (g < h) noLess:

C

A
R
M

COMP3221 lec13-decision-I.23 Saeid Nooshabadi

Some Branch Conditions
°b Unconditional

°bal Branch Always

°beq Branch Equal

°bne Branch Not Equal

°blt Branch Less Than

°ble Branch Less Than or Equal

°bgt Branch Greater Than

°bge Branch Greater Than or Equal

° Full Table Page 64 Steve Furber: ARM System On-
Chip; 2nd Ed, Addison-Wesley, 2000, ISBN: 0-201-67519-
6.

COMP3221 lec13-decision-I.24 Saeid Nooshabadi

What about unsigned numbers?
° Conditional branch instructions blt, ble, bgt, etc,

assume signed operands (defined as int in C). The
equivalent instructions for unsigned operands
(defined as unsigned in C). are:

°blo Branch Lower (unsigned)

°bls Branch Less or Same (unsigned)

°bhi Branch Higher (unsigned)

°bhs Branch Higher or Same (Unsigned)

° v1 = FFFF FFFAhex, v2 = 0000 FFFAhex

° What is result of

cmp v1, v2 cmp v1, v2

bgt L1 bhi L1

COMP3221 lec13-decision-I.25 Saeid Nooshabadi

Signed VS Unsigned Comparison

° v1 = FFFF FFFAhex, v2 = 0000 FFFAhex

° v1 < v2 (signed interpretation)

° v1 > v2 (unsigned interpretation)

° What is result of

cmp v1, v2 cmp v1, v2

bgt L1 bhi L1

… …

L1: L1:

Branch NOT taken Branch Taken
COMP3221 lec13-decision-I.26 Saeid Nooshabadi

Branches: PC-relative addressing

° Recall register r15 in the
machine also called PC;

° points to the currently
executing instruction

° Most instruction add 4 to it.
(pc increments by 4 after
execution of most
instructions)

° Branch changes it to a
specific value

° Branch adds to it
• 24-bit signed value

(contained in the instruction)

• Shifted left by 2 bits

° Labels => addresses

memory
0:

FFF...

registers

r14

r0

r15 = pc

beq address

b address

–32MB

+32MB

24 bits

COMP3221 lec13-decision-I.27 Saeid Nooshabadi

C case/switch statement

° Choose among four alternatives depending
on whether k has the value 0, 1, 2, or 3

switch (k) {
case 0: f=i+j; break; /* k=0*/
case 1: f=g+h; break; /* k=1*/
case 2: f=g–h; break; /* k=2*/
case 3: f=i–j; break; /* k=3*/
}

COMP3221 lec13-decision-I.28 Saeid Nooshabadi

Case/switch via chained if-else, C

°Could be done like chain of if-else
if(k==0) f=i+j;
else if(k==1) f=g+h;

else if(k==2) f=g–h;
else if(k==3) f=i–j;

COMP3221 lec13-decision-I.29 Saeid Nooshabadi

Case/switch via chained if-else, C/Asm.
°Could be done like chain of if-else if(k==0) f=i+j; else if(k==1) f=g+h; else if(k==2) f=g–h;else if(k==3) f=i–j;(f,i,j,g,h,k:v1,v2,v3,v4,v5,v6)cmp v6,#0 bne L1 ; branch k!=0add v1,v2,v3 ; k=0 so f=i+jb Exit ; end of caseL1:cmp v6,#1 bne L2 ; branch k!=1add v1,v4,v5 ; k=1 so f=g+hb Exit ; end of caseL2:cmp v6,#2 bne L3 ; branch k!=2sub v1,v4,v5 ; k=2 so f=g-hb Exit ; end of caseL3:cmp v6,#3 bne Exit ; branch k!=2sub v1,v2,v3 ; k=3 so f=i-jExit:

C

A
R
M

COMP3221 lec13-decision-I.30 Saeid Nooshabadi

Case/Switch via Jump Address Table
° Notice that last case must wait for n-1 tests

before executing, making it slow

° Alternative tries to go to all cases equally
fast: jump address table

• Idea: encode alternatives as a table of addresses of the
cases

- Table an array of words with addresses
corresponding to case labels

• Program indexes into table and jumps

° ARM instruction “ldr pc, []”
unconditionally branches to address L1
(Changes PC to address of L1)

COMP3221 lec13-decision-I.31 Saeid Nooshabadi

Idea for Case using Jump Table

•check within range
•get address of target clause from target array
•jump to target address

Default clause

end_of_case:

code for clause

jump to end_of_case

Address
Jump Table

COMP3221 lec13-decision-I.32 Saeid Nooshabadi

Case/Switch via Jump Address Table (#1/3)

° Use k to index a jump address table, and then
jump via the value loaded

° 1st test that k matches 1 of cases (0<=k<=3); if
not, the code exits

(k:v6, v7: Base address of JumpTable[k])

cmp v6, #0 ;Test if k < 0
blt Exit ;if k<0,goto Exit
cmp v6, #3 ;Test if k >3
bgt Exit ;if k>3,goto Exit

COMP3221 lec13-decision-I.33 Saeid Nooshabadi

Case/Switch via Jump Address Table (#2/3)
° Assume 4 sequential words (4 bytes) in memory,

with base address in v7, have addresses
corresponding to labels L0, L1, L2, L3.

° Now use (4*k) (k:v6) to index table of words and
load the clause address from the table (Address of
labels L0, L1, L2, L3) to register pc.
ldr pc, [v7, v6,lsl #2]
;JumpTable[k]= v7 + (v6*4)

(Register Indexed Addressing)

• PC will contain the address of the clause and
execution starts from there.

L3

L0
L1

L2

v7

V6*4

COMP3221 lec13-decision-I.34 Saeid Nooshabadi

Case/Switch via Jump Address Table (#3/3)

° Cases jumped to by ldr pc, [v7, v6,lsl #2]
:

L0: add v1,v2,v3 ; k=1 so f=i+jb Exit ; end of caseL1: add v1,v4,v5 ; k=1 so f=g+hb Exit ; end of caseL2: sub v1,v4,v5 ; k=2 so f=g-hb Exit ; end of caseL3: sub v1,v2,v3 ; k=3 so f=i-j
Exit:

COMP3221 lec13-decision-I.35 Saeid Nooshabadi

Jump Address Table: Summary
(k,f,i,j,g,h Base address of JumpTable[k]) :v6,v1,v2,v3,v4,v5,v7)
cmp v6, #0 ;Test if k < 0blt Exit ;if k<0,goto Exitcmp v6, #3 ;Test if k >3bgt Exit ;if k>3,goto Exit
ldr pc, [v7, v6,lsl #2];JumpTable[k]= v7 + (v6*4)
L0: add v1,v2,v3 ; k=1 so f=i+jb Exit ; end of caseL1: add v1,v4,v5 ; k=1 so f=g+hb Exit ; end of caseL2: sub v1,v4,v5 ; k=2 so f=g-hb Exit ; end of caseL3: sub v1,v2,v3 ; k=3 so f=i-j
Exit: More example on Jump Tables on CD-ROM

COMP3221 lec13-decision-I.36 Saeid Nooshabadi

If there is time, do it yourself:

° Compile this C code into ARM:

sum = 0;for (i=0;i<10;i=i+1)sum = sum + A[i];
•sum:v1, i:v2, base address of A:v3

COMP3221 lec13-decision-I.37 Saeid Nooshabadi

(If time allows) Do it yourself:
sum = 0;for (i=0;i<10;i=i+1)sum = sum + A[i];

•sum:v1, i:v2, base address of A:v3
C

A
R
M

mov v1, #0mov v2, #0Loop: ldr a1,[v3,v2,lsl #2] ; a1=A[i] add v1, v1, a1 ; sum = sum+A [i] add v2, v2, #1 ; increment i cmp v2, #10 ; Check(i<10)bne Loop ; goto loop

COMP3221 lec13-decision-I.38 Saeid Nooshabadi

“And in Conclusion …” (#1/2)
° HLL decisions (if, case) and loops (while, for)

use same assembly instructions
• Comparison: cmp in ARM

• Conditional branches: beq, bne in ARM

• Unconditional Jumps: b, ldr pc,____, mov pc, ____ in ARM

• Case/Switch: either chained if-else or jump table + ldr pc, ____

COMP3221 lec13-decision-I.39 Saeid Nooshabadi

“And in Conclusion…” (#1/2)
° New Instructions:

cmp
beq
bne
bgt
bge
blt
ble
bhi
bhs
blo
bls

