
COMP3221 lec15-function-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 15 : Functions
in C/ Assembly - I

http://www.cse.unsw.edu.au/~cs3221

August, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec15-function-I.2 Saeid Nooshabadi

Overview
° C functions
° Bookkeeping for function call/return
° Instruction support for functions
° Nested function calls
° C memory allocation: static, heap, stack
° Conclusion

COMP3221 lec15-function-I.3 Saeid Nooshabadi

Review
° HLL decisions (if, case) and loops (while, for) use

same assembly instructions
• Flag Setting Instructions: cmp, cmn, tst, teq in ARM

• Data Processing Instructions with Flag setting Feature: adds,
subs, ands, in ARM

• Conditional branches: beq, bne, bgt, blt, etc in ARM

• Conditional Instructions: addeq, ldreq,etc in ARM

• Unconditional branches: b, bal, and mv pc, Rn in ARM

• Switch/Case: chained if-else or jump table + ldr pc, []

•ldr pc, [] is VERY POWERFUL!

COMP3221 lec15-function-I.4 Saeid Nooshabadi

Review: Branches: PC-relative addressing

° Recall register r15 in the
machine also called PC;

° points to the currently
executing instruction

° Most instruction add 4 to it.
(pc increments by 4 after
execution of most
instructions)

° Branch changes it to a
specific value

° Branch adds to it
• 24-bit signed value

(contained in the instruction)

• Shifted left by 2 bits

° Labels => addresses

memory
0:

FFF...

registers

r14

r0

r15 = pc

beq address

b address

–32MB

+32MB

24 bits

COMP3221 lec15-function-I.5 Saeid Nooshabadi

C functions
main(void) {int i,j,k,m;
i = mult(j,k); ... ;m = mult(i,i); ...
}
int mult (int mcand, int mlier)
{int product = 0;while (mlier > 0) {product = product + mcand;mlier = mlier -1;
}return product;
}

What information must
compiler/program
keep track of?

COMP3221 lec15-function-I.6 Saeid Nooshabadi

Basics of Function Call

...(use regs)

set up args

jump to function

access args

... compute
result ...

...(use regs)

set up return
value

jump back to
caller

Caller
Callee

access result

...(use regs)

COMP3221 lec15-function-I.7 Saeid Nooshabadi

Function Call Bookkeeping

Registers for functions

lr = r14
a1, a2, a3, a4
a1
v1, v2,v3,v4,v5,v6,v7

° Procedure address

° Return address

° Arguments

° Return value

° Local variables

° Registers (conflicts)

=>ARM Procedure Call
Standards (APCS)
conventions for use of
registers simplify
bookkeeping

COMP3221 lec15-function-I.8 Saeid Nooshabadi

APCS Register Convention: Summary
register name software name use and linkage

r0 – r3 a1 – a4 first 4 integer args

scratch registers

integer function results

r4 – r11 v1- v8 local variables

r9 sb static variable base

r10 sl stack limit

r11 fp frame pointer

r12 ip intra procedure-call scratch pointer

r13 sp stack pointer

r14 lr return address

r15 pc program counter
Red are SW conventions for compilation, blue are HW

ARM Procedure Call Standard (APCS)

COMP3221 lec15-function-I.9 Saeid Nooshabadi

Instruction Support for Function Call?
... sum(a,b);... /* a,b:v1,v2 */}int sum(int x, int y) {return x+y;}

address
1000 mov a1,v1 ; x = a
1004 mov a2, v2 ; y = b
1008 mov lr,#1016 ; lr = 1016
1012 b sum ; jump to sum
1016 ...
2000 sum: add a1,a1,a2
2004 mov pc, lr

C

A
R
M

Why mov pc, lr vs. b 1016 to return?
; b 1016

COMP3221 lec15-function-I.10 Saeid Nooshabadi

b vs mov pc, lr : why jump register?
°Consider a function foo that is called from
several different places in your program

• each call is performed by a b instruction
- b foo

• but the return jump goes to many places
main:

b bar
...
b foo
...

bar:
...
b foo
...

foo:
...
b foo
...
mov pc, lr

COMP3221 lec15-function-I.11 Saeid Nooshabadi

A Level of Indirection
°Solves many problems in CS!

°How do you make a jump instruction
behave differently each time it is
executed?

• indirection
•mov pc, lr returns control to last caller

- recorded in a registers

°How do you make an instruction fetch a
different element of an array each time
though a loop?

• indirection
• update index address register of ldr, and str

COMP3221 lec15-function-I.12 Saeid Nooshabadi

Accessing array elements => indirection
int sumarray(int arr[]) {int i, sum;
for(i=0;i<100;i=i+1) sum = sum + arr[i];

}

mov v1, #0 ; clear v0add a2,a1,#400 ; beyond end of arr[]Loop: cmp a1,a2
bge Exitldr a3, [a1], #4 ; a3=arr[i], a1++add v1,v1,a3 ; v1= v1+ arr[i]b LoopExit: mov lr, pc

COMP3221 lec15-function-I.13 Saeid Nooshabadi

Instruction Support for Functions?
° Single instruction to branch and save return

address: branch and link (bl):

° Before:

1008 mov lr, #1016 ;lr = 1016
1012 b sum ;goto sum

° After:

1012 bl sum ; lr = 1016,goto sum
° Why bl? Make the common case fast

• and elegance

COMP3221 lec15-function-I.14 Saeid Nooshabadi

Nested Procedures (#1/2)

...sumSquare(a,b)...
int sumSquare(int x, int y) {

return mult(x,x)+ y;
}

° Need to save sumSquare return address
saved in lr by bl sumSquare instruction,
before call to mult

• Otherwise bl mult overwrites lr
° One word per procedure in memory ?

• e.g., str lr, [sp,sumSquareRA] ; sp = r13
° Recursive procedures could overwrite

saved area => need safe area per function
invocation => stack

COMP3221 lec15-function-I.15 Saeid Nooshabadi

Nested Procedures (#2/2)

° In general, may need to save some other
info in addition to lr.

° When a C program is run, there are 3
important memory areas allocated:

• Static: Variables declared once per program,
cease to exist only after execution completes

• Heap: Variables declared dynamically (such as
counters in for loops, or by function malloc())

• Stack: Space to be used by procedure during
execution; this is where we can save register
values

COMP3221 lec15-function-I.16 Saeid Nooshabadi

“What’s This Stuff Good For?”

Breathing Observation Bubble:
BOB pipes air from a tank under
the handlebars into an acrylic
dome, replacing a diver's face
mask and breathing apparatus.
Wireless technology lets riders
talk to other BOBsters darting
through the water nearby, as well
as to armchair divers above in a
boat or back on shore. Saving
energy from not having to kick,
divers can stay submerged almost
an hour with the BOB. Like most
modern scuba gear, the BOB
features a computer that tells
riders when to come up and
calculates decompression times
for a safe return to the surface.
One Digital Day, 1998
www.intel.com/onedigitalday

What do applications (“apps”)
like these mean for reliability
requirements of our technology?

COMP3221 lec15-function-I.17 Saeid Nooshabadi

C memory allocation seen by the Program

0

∞Address

Code Program

Static Variables declared
once per program

Heap
Explicitly created space,
e.g., malloc(); C pointers

Stack
Space for saved
procedure informationsp

stack
pointer

Static
base
sb

COMP3221 lec15-function-I.18 Saeid Nooshabadi

Stack Operations

° PUSH v1

° POP v1

sub sp,sp, #4 ; space on stack

str v1, [sp,#0] ; save x

ldr v1, [sp,#0] ; restore x

add sp, sp,#4 ; => stack space

SP

v1 61

61

75

...

What does sp point to?

D
ecreasing address

COMP3221 lec15-function-I.19 Saeid Nooshabadi

Stack Operations (Better Way)

° PUSH v1

° POP v1

str v1, [sp,#-4]! ; space on stack
; and save x

ldr v1, [sp], #4 ; restore x
; and reclaim stack space

SP

v1 61

61

75

...

What does sp point to?

D
ecreasing address

COMP3221 lec15-function-I.20 Saeid Nooshabadi

sp on entry

Register Save Area

Local Variables

sp during

Arguments for
Callees

Typical Structure of a Stack Frame

° compiler
calculates total
frame size (F)

° at start of call,
subtract F from
SP

° at end, add F to
SP

° where are args
from caller?

° where are args for
callee

Caller Frame

Callee Frame

COMP3221 lec15-function-I.21 Saeid Nooshabadi

“And in Conclusion …” (#1/2)

° ARM Assembly language instructions
• Unconditional branches: b, mov pc, rx , bl

° Operands
• Registers (word = 32 bits); a1 - a3, v1 – v8, ls, sb, fp, sp, lr

COMP3221 lec15-function-I.22 Saeid Nooshabadi

“And in Conclusion …” (#2/2)
° Functions, procedures one of main ways to give

a program structure, reuse code

°mov pc, Rn required instruction; most add bl
(or equivalent) to make common case fast

° Registers make programs fast, but make
procedure/function call/return tricky

° ARM SW convention divides registers for
passing arguments, return address, return
value, stack pointer

