
COMP3221 lec18-function-III.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 17 : Functions
in C/ Assembly - III

http://www.cse.unsw.edu.au/~cs3221

September, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec18-function-III.2 Saeid Nooshabadi

Overview

° Why Procedure Conventions?

° Basic Structure of a Function

° Example: Recursive Function

° Instruction Support for Function

° Block Store and Load

° Conclusion

COMP3221 lec18-function-III.3 Saeid Nooshabadi

Review: APCS Register Convention: Summary
register name software name use and linkage

r0 – r3 a1 – a4 first 4 integer args

scratch registers

integer function results

r4 – r11 v1- v8 local variables

r9 sb static variable base

r10 sl stack limit

r11 fp frame pointer

r12 ip intra procedure-call scratch pointer

r13 sp stack pointer

r14 lr return address

r15 pc program counter
Red are SW conventions for compilation, blue are HW

ARM Procedure Call Standard (APCS)
COMP3221 lec18-function-III.4 Saeid Nooshabadi

Review: Function Call Bookkeeping
° Big Ideas:

• Follow the procedure conventions and nobody gets
hurt.

• Data is just 1’s and 0’s, what it represents depends on
what you do with it

• Function Call Bookkeeping:
• Caller Saved Registers are saved by the caller, that is,

the function that includes the bl instruction
• Callee Saved Registers are saved by the callee, that is,

the function that includes the mov pc, lr instruction
• Some functions are both a caller and a callee

COMP3221 lec18-function-III.5 Saeid Nooshabadi

Review: Caller & Callee Saved Registers

• Caller Saved Registers:
• Return address lr
• Arguments a1, a2, a3, a4
• Return value a1, a2, a3, a4

• Callee Saved Registers:
•v Registers v1 – v8

COMP3221 lec18-function-III.6 Saeid Nooshabadi

Review: StackMemory Allocation on Call
C Procedure Call Frame

° Pass arguments (4 regs)

° If called from another
functions, save lr

° Save caller-saved regs

° Save additional Arguments

°bl
° Save old sp and fp & set fp

1st word of frame (old sp-4)

° Save callee-saved regs

Callee Saved
Registers

Argument 5
Argument 6

fp

low

high
Address

stack
grows

Local
Variablessp

...

Caller Saved
Registers

COMP3221 lec18-function-III.7 Saeid Nooshabadi

Review: Memory Deallocation on Return
° Move return value into a1
° Restore callee-saved regs

from the stack

° Restore old sp and fp from
stack

°mov pc , lr
° Restore caller-saved regs

° If saved lr, restore it

...
fp

low

high
Address

stack
grows

sp

COMP3221 lec18-function-III.8 Saeid Nooshabadi

Why Procedure Conventions? (#1/2)

° Think of procedure conventions as a
contract between the Caller and the Callee

• If both parties abide by a contract, everyone is happy (:))

• If either party breaks a contract, disaster and litigation
result (: O)

° Similarly, if the Caller and Callee obey the
procedure conventions, there are
significant benefits. If they don’t, disaster
and program crashes result

COMP3221 lec18-function-III.9 Saeid Nooshabadi

Why Procedure Conventions? (#2/2)

° Benefits of Obeying Procedure
Conventions:

• People who have never seen or even communicated with
each other can write functions that work together

• Recursion functions work correctly

COMP3221 lec18-function-III.10 Saeid Nooshabadi

Basic Structure of a Function

entry_label:
sub sp,sp, #fsize ; create space on stack
str lr,[sp, #fsize-4]; save lr

; save other regs

...

;restore other regs
ldr lr, [sp,#fsize-4];restore lr
add sp, sp, #fsize ;reclaim space on stack
mov pc, lr

Epilogue

Prologue

Body
lr

COMP3221 lec18-function-III.11 Saeid Nooshabadi

Example: Compile This (#1/5)
main() {int i,j,k,m; /* i-m:v1–v4 */
i = mult(j,k); ... ;m = mult(i,i); ...
return 0
}
int mult (int mcand, int mlier){int product;
product = 0;while (mlier > 0) {product += mcand;mlier -= 1; }return product;
}

COMP3221 lec18-function-III.12 Saeid Nooshabadi

Example: Compile This (#2/5)

__start:
str lr, [sp,#-4]!; store return ; address mov a1,v2 ; arg1 = jmov a2,v3 ; arg2 = k bl mult ; call multmov v1, a1 ; i = mult()...
mov a1, v1 ; arg1 = imov a2, v1 ; arg2 = i bl mult ; call multmov v4, a1 ; m = mult()...
ldr lr, [sp,#4]! ; restore return address
mov pc, lr

COMP3221 lec18-function-III.13 Saeid Nooshabadi

Example: Compile This (#3/5)

° Notes:
•main function returns to O/S, so mov pc, lr,

so there’s need to save lr onto stack

• all variables used in main function are callee
saved registers (“v”), so there’s no need to save
these onto stack

COMP3221 lec18-function-III.14 Saeid Nooshabadi

Example: Compile This (#4/5)

mult:mov a3, #0 ; prod=0
Loop:cmp a2,#0 ; mlier > 0? beq Fin ; no=>Finadd a3,a3,a1 ; prod+=mcandsub a2,a2,#1 ; mlier-=1b Loop ; goto Loop

Fin:mov a1,a3 ; a1=prod mov pc, lr ; return

COMP3221 lec18-function-III.15 Saeid Nooshabadi

Example: Compile This (#5/5)

° Notes:
• no bl calls are made from mult and we don’t use

any callee saved (“v”) registers, so we don’t need
to save anything onto stack

• Scratch registers a1 – a3 are used for
intermediate calculations

•a2 is modified directly (instead of copying into a
another scratch register) since we are free to
change it

• result is put into a1 before returning

COMP3221 lec18-function-III.16 Saeid Nooshabadi

Fibonacci Rabbits

° Suppose a newly-born pair of rabbits, one
male, one female, are put in a field. Rabbits
are able to mate at the age of one month so
that at the end of its second month a female
can produce another pair of rabbits.
Suppose that our rabbits never die and that
the female always produces one new pair
(one male, one female) every month from
the second month on.

° How many pairs will there be in one year?
Fibonacci’s Puzzle

Italian, mathematician Leonardo of Pisa (also known as
Fibonacci) 1202.

COMP3221 lec18-function-III.17 Saeid Nooshabadi

Fibonacci Rabbits (Solution)

1. At the end of the first month, they mate,
but there is still one only 1 pair.

2. At the end of the second month the
female produces a new pair, so now there
are 2 pairs of rabbits in the field.

3. At the end of the third month, the original
female produces a second pair, making 3
pairs in all in the field.

4. At the end of the fourth month, the
original female has produced yet another
new pair, the female born two months ago
produces her first pair also, making 5
pairs.

COMP3221 lec18-function-III.18 Saeid Nooshabadi

Fibonacci Rabbits (Solution Animated)

Month 0 1 2 3 4 5

Rabbit 0 1 1 2 3 5 8
Numbers

COMP3221 lec18-function-III.19 Saeid Nooshabadi

Fibonacci Rabbits (Solution in Picture)

The number of pairs of rabbits in the field at the start of
each month is 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

COMP3221 lec18-function-III.20 Saeid Nooshabadi

Example: Fibonacci Numbers (#1/6)

° The Fibonacci numbers are defined as
follows:

° F(n) = F(n – 1) + F(n – 2)

F(0) and F(1) are defined to be 1

° In C, this could be written:
int fib(int n) {if(n == 0) { return 1; }if(n == 1) { return 1; }return (fib(n - 1) + fib(n - 2));
}

COMP3221 lec18-function-III.21 Saeid Nooshabadi

fib:

; Save the return address
; Save v1_& Push the
; stack frame___

str lr, [sp,#-4]!
str v1, [sp,#-4]!

° Now, let’s translate this to ARM!

° You will need space for three words on the stack

° The function will use v1
° Write the Prologue:

Example: Fibonacci Numbers (#2/6)

COMP3221 lec18-function-III.22 Saeid Nooshabadi

fin:
ldr v1, [sp,#4]!___
ldr lr, [sp,#4]!___

mov pc,lr__________

; Restore v1__________
; Restore return address
; Pop the stack frame___
; Return to caller_______

° Now write the Epilogue:

Example: Fibonacci Numbers (#3/6)

COMP3221 lec18-function-III.23 Saeid Nooshabadi

cmp a1, #0
cmpne a1, #1
moveq, a1, #1
beq fin_____
Continued on next slide. . .

° Finally, write the body. The C code is below. Start
by translating the lines indicated in the comments

int fib(int n) {if(n == 0) { return 1; } /*Translate Me!*/ if(n == 1) { return 1; } /*Translate Me!*/ return (fib(n - 1) + fib(n - 2));
}

; if (n == 0). . .
; if (n == 1). . .
; . . ._____________
; return 1__________

Example: Fibonacci Numbers (#4/6)

COMP3221 lec18-function-III.24 Saeid Nooshabadi

; Need a1 after bl
; a1 = n – 1_______
; fib(n – 1) ______
; Save return value
; Restore a1_______
; a1 = n – 2_______

str a1, [sp, #-4]!
sub a1, a1, #1_____
bl fib_____________
mov v1, a1_________
ldr a1, [sp, #4]!__
sub a1, a1, #2_____
Continued on next slide. . .

° Almost there, but be careful, this part is tricky!

int fib(int n) {. . .return (fib(n - 1) + fib(n - 2));
}

Example: Fibonacci Numbers (#5/6)

COMP3221 lec18-function-III.25 Saeid Nooshabadi

bl fib__________
add a1, a1, v1__
;To the epilogue and beyond. . .

; fib(n-2)_______________
; a1 = fib(n-1) + fib(n-2)

° Remember that is v1 Callee Save and a1 is caller
saved!

int fib(int n) {. . .return (fib(n - 1) + fib(n - 2));
}

Example: Fibonacci Numbers (#6/6)

COMP3221 lec18-function-III.26 Saeid Nooshabadi

Stack Growth and Shrinkage

F(5)

sp
lr
v1
a1

F(4)

sp
lr
v1
a1

F(3)

sp
v1
a1

lr

F(2)

sp
v1
a1

lr

F(1)

sp v1
lr

2
F(1)

sp v1
lr

+ 1

3

F(2)

sp
v1
a1

lr

F(1)

sp v1
lr

1
F(0)

sp v1
lr

+ 1

+ 2

5

F(3)

sp
v1
a1

lr

F(2)

sp
v1
a1

lr

F(1)

sp v1
lr

1
F(0)

sp v1
lr

+ 1
1

F(0)

sp v1
lr

+ 1

2
F(1)

sp v1
lr

+ 1

+ 3

8

sp

int fib(int n) {
if(n == 0) { return 1; }
if(n == 1) { return 1; }
return (fib(n - 1) + fib(n - 2);
}

COMP3221 lec18-function-III.27 Saeid Nooshabadi

Instruction Support for Stack
° Consider the following code:str lr, [sp,#-4]!

str fp, [sp,#-4]!
str v3, [sp,#-4]!
str v2, [sp,#-4]!
str v1, [sp,#-4]!
str a2, [sp,#-4]!
str a1, [sp,#-4]!

Epilogue

Prologue

Body . . .

ldr a1, [sp,#4]!
ldr a2, [sp,#4]!
ldr v1, [sp,#4]!
ldr v2, [sp,#4]!
ldr v3, [sp,#4]!
ldr fp, [sp,#4]!
ldr lr, [sp,#4]!

stmfd sp!, {a1-a2,v1-v3,fp,lr}
ldmfd sp!, {a1-a2,v1-v3,fp,lr}

Old SP

fp
v3
v2
v1
a2

SP

lr

a1

fp
v3
v2
v1
a2

SP
lr

a1

Store Multiple
Full Descending

Load Multiple
Full Descending

COMP3221 lec18-function-III.28 Saeid Nooshabadi

Block Copy via Stack Operation

° The contents of registers r0 to r6 need to be
swapped around thus:
• r0 moved into r3
• r1 moved into r4
• r2 moved into r6
• r3 moved into r5
• r4 moved into r0
• r5 moved into r1
• r6 moved into r2

° Write a segment of code that uses full descending
stack operations to carry this out, and hence
requires no use of any other registers for
temporary storage.

COMP3221 lec18-function-III.29 Saeid Nooshabadi

Block Copy Sample Solution

ldmfd sp!,
{r3,r4,r6}

r3 = r0
r4 = r1
r6 = r2

r5
r4

sp

r6

r3

ldmfd sp!,
{r5}

r5 = r3

r5
sp

r6

r4

ldmfd sp!,
{r0-r2}

r0 = r4
r1 = r5
r2 = r6

sp

stmfd sp!,
{r0-r6}

Old sp
r5
r4
r3
r2
r1

sp

r6

r0

COMP3221 lec18-function-III.30 Saeid Nooshabadi

Direct functionality of Block Data Transfer

° When LDM / STM are not being used to implement
stacks, it is clearer to specify exactly what
functionality of the instruction is:

• i.e. specify whether to increment / decrement the base pointer,
before or after the memory access.

° In order to do this, LDM / STM support a further
syntax in addition to the stack one:

• STMIA / LDMIA : Increment After

• STMIB / LDMIB : Increment Before

• STMDA / LDMDA : Decrement After

• STMDB / LDMDB : Decrement Before

For details See Chapter 3, page 61 – 62
Steve Furber: ARM System On-Chip; 2nd Ed,
Addison-Wesley, 2000, ISBN: 0-201-67519-6.

COMP3221 lec18-function-III.31 Saeid Nooshabadi

“And in Conclusion …’’

° ARM SW convention divides registers into
those calling procedure save/restore and those
called procedure save/restore
• Assigns registers to arguments, return address, return value,

stack pointer

° Optional Frame pointer fp reduces bookkeeping
on procedure call

° Use Stack Block copy Instructions stmfd & ldmfd to store and retrieve multiple registers
to/from from stack.

