
COMP3221 lec18-pointers.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 18 : Pointers & Arrays in C/
Assembly

http://www.cse.unsw.edu.au/~cs3221

September, 2003
Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec18-pointers.2 Saeid Nooshabadi

Overview

°Arrays, Pointers, Functions in C
°Example
°Pointers, Arithmetic, and Dereference
°Conclusion

COMP3221 lec18-pointers.3 Saeid Nooshabadi

Review: Register Convention
• Caller Saved Registers:
• Return address lr
• Arguments a1, a2, a3, a4
• Return values a1, a2, a3, a4

• Callee Saved Registers:
•v Registers v1 – v8

COMP3221 lec18-pointers.4 Saeid Nooshabadi

Review: Function Call Bookkeeping
°Big Ideas:
• Follow the procedure conventions and nobody gets

hurt.
• Data is just 1’s and 0’s, what it represents depends on

what you do with it

• Function Call Bookkeeping:
• Caller Saved Registers are saved by the caller, that is,

the function that includes the bl instruction
• Callee Saved Registers are saved by the callee, that is,

the function that includes the mov pc, lr instruction
• Some functions are both a caller and a callee

COMP3221 lec18-pointers.5 Saeid Nooshabadi

Argument Passing Options
° 2 choices
• “Call by Value”: pass a copy of the item to
the function/procedure
- x … f(x) … x. Call to f does not change x

• “Call by Reference”: pass a pointer to the
item to the function/procedure

°Single word variables passed by value
°What about passing an array? e.g., a[100]
•Pascal--call by value--copies 100 words of a[] onto the stack
•C--call by reference--passes a pointer
(1 word) to the array a[] in a register

COMP3221 lec18-pointers.6 Saeid Nooshabadi

Pointers Implementation in ARM
°c is int, has value 100, in memory at
address 0x10000000, p in v1, x in v2

p = &c; /* p gets 0x10000000 */
x = *p; /* x gets 100 */
p = 200; / c gets 200 */
; p = &c; /* p gets 0x10000000 */mov v1,0x1000000 ; p = 0x10000000
; x = *p; /* x gets 100 */ldr v2, [v1] ; dereferencing p
; *p = 200; /* c gets 200 */mov a1, #200str a1, [v1] ; dereferencing p

COMP3221 lec18-pointers.7 Saeid Nooshabadi

Simple Array: C vs. ARM Assembly

int strlen(char *s) { char *p = s; /* p points to chars */
while (*p != ’\0’)p++; /* points to next char */return p - s; /* end - start */

}
sub a2, a1, #1; p = s - 1 Loop:ldrb a3,[a2,#1]! ;/*derefence p, p++*/cmp a3, #0bne Loop

Exit: sub a1,a2,a1 ; p - s mov pc, lr
COMP3221 lec18-pointers.8 Saeid Nooshabadi

Arrays, Pointers, Functions in C

° 4 versions of array function that adds two
arrays and puts sum in a third array
(sumarray)
• Third array is passed to function
• Using a local array (on stack) for result and

passing a pointer to it
• Third array is allocated on heap
• Third array is declared static

°Purpose of example is to show interaction of
C statements, pointers, and memory
allocation

COMP3221 lec18-pointers.9 Saeid Nooshabadi

Calling sumarray, Version 1

int x[100], y[100], z[100];
sumarray(x, y, z);
°C calling convention means above the
same as
sumarray(&x[0], &y[0], &z[0]);
°Really passing pointers to arrays
mov a1,sb ; x[0] starts at sbadd a2,sb,#400 ; y[0] above x[100]add a3,sb,#800 ; z[0] above y[100]bl sumarray

COMP3221 lec18-pointers.10 Saeid Nooshabadi

Version 1: Optimized Compiled Code
void sumarray(int a[],int b[],int c[]) {int i;
for(i=0;i<100;i=i+1) c[i] = a[i] + b[i];

}
sumarray: stmfd sp!,{v1- v2};save v1–v2 on stack add a4, a1,#400 ; beyond end of a[]Loop: cmp a1, a4 beq Exitldr v1, [a1], #4 ;a1=a[i], a1=a1+4ldr v2, [a2], #4 ;a2=b[i], a2=a2+4add v2, v2, v1 ;v2=a[i] + b[i]str v2, [a3], #4 ;c[i]=a[i] + b[i]; a3 = a3+4 b LoopExit: ldmfd sp!,{v1-v2}; restore v1-v2 mov pc, lr

COMP3221 lec18-pointers.11 Saeid Nooshabadi

Version 2 to Fix Weakness of Version 1

°Would like recursion to work
int * sumarray(int a[],int b[]);/* adds 2 arrays and returns sum */
sumarray(x, sumarray(y,z));
°Cannot do this with Version 1 style solution:

what about this

int * sumarray(int a[],int b[]) {int i, c[100];for(i=0;i<100;i=i+1) c[i] = a[i] + b[i];return c;}

COMP3221 lec18-pointers.12 Saeid Nooshabadi

Pointers, Arithmetic, and Dereference
int x = 1, y = 2; /* x and y are integer variables */
int z[10]; /* an array of 10 ints, z points to start */
int *p; /* p is a pointer to an int */

x = 21; /* assigns x the new value 21 */
z[0] = 2; z[1] = 3 /* assigns 2 to the first, 3 to the next */
p = &z[0]; /* p refers to the first element of z */
p = z; /* same thing; p[i] == z[i]*/
p = p+1; /* now it points to the next element, z[1] */
p++; /* now it points to the one after that, z[2] */
p = 4; / assigns 4 to there, z[2] == 4*/
p = 3; /* bad idea! Absolute address!!! */
p = &x; /* p points to x, *p == 21 */
z = &y illegal!!!!! array name is not a variable

y:

x:

p:

z[0]
z[1]

1

2

2

2
3
4z[2]

COMP3221 lec18-pointers.13 Saeid Nooshabadi

Version 2: Revised Compiled Code
for(i=0;i<100;i=i+1) c[i] = a[i] + b[i];return c;}
sumarray: stmfd sp!,{v1- v2};save v1–v2 on stackadd a4, a1,#400 ; beyond end of a[]sub sp, sp,#400 ; space for cmov a3, sp ; ptr for cLoop: cmp a1, a4beq Exit ldr v1, [a1], #4 ;a1=a[i], a1=a1+4ldr v2, [a2], #4 ;a2=b[i], a2=a2+4add v2, v2, v1 ;v2=a[i] + b[i]str v2, [a3], #4 ;c[i]=a[i] + b[i] ; a3 = a3+4

b LoopExit: mov a1, sp ; &c[0]add sp,sp, 400 ; pop stackldmfd sp!,{v1-v2}; restore v1-v2 mov pc, lr
COMP3221 lec18-pointers.14 Saeid Nooshabadi

Weakness of Version 2
°Legal Syntax; What’s Wrong?
°Will work until call

another function
that uses stack
°c[100] Won’t be reused

instantly(e.g, add a printf)

°Stack allocated
+ unrestricted pointer is
problem

c[100]
a1

low

high
Address

stack
grows

sp

COMP3221 lec18-pointers.15 Saeid Nooshabadi

Version 3 to Fix Weakness of Version 2
°Solution: allocate c[] on heap

int * sumarray(int a[],int b[]) {int i; int *c;
c = (int *) malloc(100);
for(i=0;i<100;i=i+1) c[i] = a[i] + b[i];return c;}

Code

Static

Heap

Stack

c[100]

°Not reused unless freed
• Can lead to memory leaks
• Java, has garbage collectors to reclaim free space

COMP3221 lec18-pointers.16 Saeid Nooshabadi

Version 3: Revised Compiled Code
sumarray: stmfd sp!,{a1-a2,v1- v2,lr};save a1-a2, v1–v2 & lr on stackadd a4, a1,#400 ; beyond end of a[]mov a1,#400 ; bl malloc ; get space for cmov a3, a1 ; get &c ldmfd sp!,{a1-a2} ; restor a1-a2Loop: cmp a1, a4beq Exit ldr v1, [a1], #4 ;a1=a[i], a1=a1+4ldr v2, [a2], #4 ;a2=b[i], a2=a2+4add v2, v2, v1 ;v2=a[i] + b[i]str v2, [a3], #4 ;c[i]=a[i] + b[i]; a3 = a3+4 b LoopExit: sub a1, a3, #400 ; &c[0]ldmfd sp!,{v1-v2,pc}; restore v1-v2 ; and return

COMP3221 lec18-pointers.17 Saeid Nooshabadi

Lifetime of storage & scope

° automatic (stack allocated)
• typical local variables of a function
• created upon call, released upon return
• scope is the function

°heap allocated
• created upon malloc, released upon free
• referenced via pointers

° external / static
• exist for entire program

COMP3221 lec18-pointers.18 Saeid Nooshabadi

Version 4 : Alternative to Version 3
°Static declaration

int * sumarray(int a[],int b[]) {int i; static int c[100];
for(i=0;i<100;i=i+1) c[i] = a[i] + b[i];return c;}

Code

Static

Heap

Stack

c[100]°Compiler allocates once for
function, space is reused
• Will be changed next time sumarray invoked
• Used in C libraries

COMP3221 lec18-pointers.19 Saeid Nooshabadi

“What’s This Stuff Good For?”

In 1974 Vint Cerf co-wrote TCP/IP, the language that allows computers to communicate with
one another. His wife of 35 years (Sigrid), hearing-impaired since childhood, began using the
Internet in the early 1990s to research cochlear implants, electronic devices that work with the
ear's own physiology to enable hearing. Unlike hearing aids, which amplify all sounds equally,
cochlear implants allow users to clearly distinguish voices--even to converse on the phone.
Thanks in part to information she gleaned from a chat room called "Beyond Hearing," Sigrid
decided to go ahead with the implants in 1996. The moment she came out of the operation, she
immediately called home from the doctor's office--a phone conversation that Vint still relates
with tears in his eyes. One Digital Day, 1998 (www.intel.com/onedigitalday)

COMP3221 lec18-pointers.20 Saeid Nooshabadi

What about Structures?

°Scalars passed by value
°Arrays passed by reference (pointers)
°Structures by value too

°Can think of C passing everything by value,
just that arrays are simply a notation for
pointers and the pointer is passed by value

COMP3221 lec18-pointers.21 Saeid Nooshabadi

“And in Conclusion..”
° In C :
• Scalars passed by value
• Arrays passed by reference

° In C functions we can return a pointer to Arrays
defined in Static, Heap or stack area.
°Returning a pointer to an array in stack gives

rise to unrestricted pointers

