COMP 3221

Microprocessors and Embedded Systems
 Lectures 19 : Floating Point Number Representation - I
 http://www.cse.unsw.edu.au/~cs3221

September, 2003
Saeid Nooshabadi
Saeid@unsw.edu.au
COMP3221 lec 19-fp-I. 1
${ }^{\circ}$ Floating Point Numbers
${ }^{\circ}$ Motivation: Decimal Scientific Notation

- Binary Scientific Notation
${ }^{\circ}$ Floating Point Representation inside computer (binary)
- Greater range, precision
${ }^{\circ}$ IEEE-754 Standard

Review of Numbers

${ }^{\circ}$ Computers are made to deal with numbers
${ }^{\circ}$ What can we represent in \mathbf{N} bits?

- Unsigned integers:

0 to $2^{N}-1$

- Signed Integers (Two's Complement)
$-2^{(\mathrm{N}-1)}$ to $2^{(\mathrm{N}-1)}-1$

Other Numbers

```
\({ }^{\circ}\) What about other numbers?
    - Very large numbers? (seconds/century)
            \(3,155,760,000_{10}\left(3.15576_{10} \times 10^{9}\right)\)
    - Very small numbers? (atomic diameter)
            \(0.00000001_{10}\left(1.0_{10} \times 10^{-8}\right)\)
    - Rationals (repeating pattern)
            2/3 (0.666666666...)
        - Irrationals
            \(2^{1 / 2} \quad\) (1.414213562373...)
    - Transcendentals
        e (2.718...), \(\pi\) (3.141...)
    \({ }^{\circ}\) All represented in scientific notation
```

fraction
mantissa/significand

${ }^{\circ}$ Normalized form: no leadings Os (exactly one digit to left of decimal point)
${ }^{\circ}$ Alternatives to representing $1 / 1,000,000,000$

- Normalized:
1.0×10^{-9}
- Not normalized:
$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

How to represent 0 in Normalized form?

Floating Point Number Range vs Precision (\#1/4)
${ }^{\circ}$ For simplicity, assume integer Representation for Significand.
${ }^{\circ}$ Represent \mathbf{N} by $\mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3}$, where

$$
\begin{aligned}
& \mathrm{N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 10^{\mathrm{d}_{3}} \\
& \mathrm{~N}=\mathrm{d}_{1} \times 10^{\mathrm{d}_{2} \mathrm{~d}_{3}} \\
& \mathrm{~N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 100^{\mathrm{d}_{3}}
\end{aligned}
$$

Interesting Properties

${ }^{\circ}$ Finite precision

- i.e. the number of bits in which to represent the significand and exponent is limited.
- Thus not all non-integer values can be represented exactly.
- Example: represent 1.32 as $d_{1} d_{2} . \mathrm{f}_{1} \times 10^{d_{3}}$
(no digit after the decimal point)

Floating Point Number Range vs Precision (\#2/4)
${ }^{\circ}$ Which representation can represent the largest value?

$$
\begin{array}{ll}
\mathrm{N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 10^{\mathrm{d}_{3}} & \mathrm{~N}=99 \times 10^{9}=9.9 \times 10^{10} \\
\mathrm{~N}=\mathrm{d}_{1} \times 10^{\mathrm{d}_{2} \mathrm{~d}_{3}} & \\
\mathrm{~N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 100^{\mathrm{d}_{3}} & \mathrm{~N}=99 \times 100^{9}=9.9 \times 10^{19}
\end{array}
$$

Floating Point Number Range vs Precision (\#3/4)
${ }^{\circ}$ In which representation can the most different values be represented?
${ }^{\circ}$ All can represent the same number of different values.

$$
N=d_{1} d_{2} \times 10^{d_{3}}
$$

- Two of the systems can represent an equal number of values, more than the third.

$\mathrm{N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 100^{\mathrm{d}_{3}}$

COMP3221 lec19-fp-1. 9
º3 can represent more values than the other two.
$\# 2$ can represent more values than the other two.
\#1 can represent more values than the other two

Saeid Nooshabadi

Floating Point Number Range vs Precision (\#4/4)

${ }^{\circ}$ In which representation can the most different values be represented?

```
\(\mathrm{N}=\mathrm{d}_{1} \mathrm{~d}_{2} \times 10^{\mathrm{d}_{3}}\)
\(99 \times 10+1=991\)
\(N=d_{1} \times 10^{d_{2} d_{3}}\)
\(9 \times 100+1=901\)
\(N=d_{1} d_{2} \times 100^{d_{3}}\)
\(99 \times 10+1=991\)
```

COMP3221 lec19-fp-I. 10

All can represent the same
number of different values.

\#3 can represent more values than the other two.
$\# 2$ can represent more values than the other two.
*\#1 can represent more values than the other two

Saeid Nooshabadi

Scientific Notation for Binary Numbers

${ }^{\circ}$ Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers

- Declare such variable in C as float

Properties of a good FP Number rep.
${ }^{\circ}$ Represents many useful numbers

- most of the 2^{N} possible are useful
- How many LARGE? How many small?
${ }^{\circ}$ Easy to do arithmetic (+, -, *, /)
${ }^{\circ}$ Easy to do comparison ($==,<,>$)
${ }^{\circ}$ Nice mathematical properties
- A ! $=B$ => - B != 0

Floating Point Representation (\#1/2)

Floating Point Representation (\#2/2)

${ }^{\circ}$ Normal format: +1.xxxxxxxxxx ${ }_{\text {two }}{ }^{*}{ }^{\mathrm{yyyyy}_{\mathrm{two}}}$
${ }^{\circ}$ Multiple of Word Size (32 bits)

$3130 \quad 2322$	
S ${ }^{\text {S }}$ Exponent	Significand
1 bit 8 bits ${ }^{\circ}$ S represen	23 bits
${ }^{\circ}$ Exponent r	ts y's
${ }^{\circ}$ Significand	nts x's
${ }^{\circ}$ Leading 1 i	cand is implied
${ }^{\circ}$ Represent $2.0 \times 10^{-38} \mathrm{t}$	as small as as 2.0×10^{38}

Double Precision FI. Pt. Representation

${ }^{\circ}$ Next Multiple of Word Size (64 bits)
3130

20	Exponent	Significand
bit	11 bits	20 bits
Significand (cont'd)		
32 bits		

32 bits
${ }^{\circ}$ Double Precision (vs. Single Precision)

- C variable declared as double
- Represent numbers almost as small as 2.0×10^{-308} to almost as large as 2.0×10^{308}
- But primary advantage is greater accuracy due to larger significand
${ }^{\circ}$ What if result too large? (> 2.0×10^{38})
- Overflow!
- Overflow => Exponent larger than represented in 8-bit Exponent field
${ }^{\circ}$ What if result too small? ($<0,<2.0 \times 10^{-38}$)
- Underflow!
- Underflow => Negative exponent larger than represented in 8 -bit Exponent field
${ }^{\circ} \mathrm{How}$ to reduce chances of overflow or underflow?

FI. Pt. Hardware

${ }^{\circ}$ Microprocessors do floating point computation using a special coprocessor.

- works under the processor supervision
- Has its own set of registers
${ }^{\circ}$ Most low end processors do not have Ft. Pt. Coprocessors
- Ft. Pt. Computation by software emulation
- ARM processor on DSLMU board does not have Ft. Pt. Coprocessor
- Some high end ARM processors do

IEEE 754 Floating Point Standard (\#1/6)

IEEE 754 Floating Point Standard (\#2/6)

${ }^{\circ}$ Single Precision, (DP similar)
${ }^{\circ}$ Sign bit: 1 means negative 0 means positive
${ }^{\circ}$ Significand:

- To pack more bits, leading 1 implicit for normalized numbers. (Hidden Bit)
$-1+23$ bits single, $1+52$ bits double
- always true: 0 < Significand < 1
(for normalized numbers)
${ }^{\circ}$ What about Zero?
Next Lecture

IEEE 754 Floating Point Standard (\#3/6)

[^0]${ }^{\circ}$ Kahan* wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares

- Wanted Compare to be faster, by means of a single compare operation, used for integer numbers, especially if positive FP numbers
${ }^{\circ}$ How to order 3 parts (Sign, Significand and Exponent) to simplify compare?
- The Author of IEEE 754 FP Standard http://www.cs.berkeley.edu/~wkahan/ ieee754status/754story.html

COMP3221 lec 19-fp-l. 18
Saeid Nooshabadi

IEEE 754 Floating Point Standard (\#4/6)
${ }^{\circ}$ Want compare FI.Pt. numbers as if integers, to help in sort

- Sign first part of number
- Exponent next, so big exponent => bigger No.
${ }^{\circ}$ Negative Exponent?
- 2 's comp? 1.0×2^{-1} vs $1.0 \times 2^{+1}$ ($1 / 2$ vs 2)

$1 / 2$| 0 | 11111111 | 00000000000000000000000 |
| :--- | :--- | :--- |
| | 0 | 0000 |

2	0	00000001	00000000000000000000000

- This notation using integer compare of $1 / 2$ vs 2 makes $1 / 2>2$!

IEEE 754 Floating Point Standard (\#5/6)

Instead, pick notation:		-1270000 0000
00000000 is most negative, 11111111 is most positive		-126 000000
- Called Biased Notation;		
	s subtracted to get n	
- 127 in Single Prec. (1023 D.P.)		
2's comp? $1.0 \times \mathbf{2}^{-1}$ vs $1.0 \times 2^{+1}(1 / 2 \mathrm{vs} 2)$		
- This notation using integer compare of 1/2 vs 2 makes 2 look greater than 1/2		

2's comp? $1.0 \times \mathbf{2}^{-1}$ vs $1.0 \times 2^{+1}$ (1/2 vs 2)

- This notation using integer compare of $1 / 2$ vs 2 makes 2 look greater than $1 / 2$
OMP3221 lec19-fp-l. 2

Floating Point Number Distribution

Using mantissa of 1.000 and positive exponents
and Sign bit
and negative exponents
in each of the intervals of exponentially increasing size can represent 2^{s} ($s=3$ here) numbers of uniform difference But how do we represent 0? Next Lecture!

IEEE 754 Floating Point Standard (\#6/6)

${ }^{\circ}$ Double precision identical, except with exponent bias of 1023

"And in Conclusion.."

${ }^{\circ}$ Number of digits allocated to significand and exponent, and choice of base, can affect both the number of different representable values and the range of values.
${ }^{\circ}$ Finite precision means we have to cope with roundoff error (arithmetic with inexact values) and truncation error (large values overwhelming small ones).
${ }^{\circ}$ IEEE 754 Standard allows Single Precision (1 word) and Double Precision (2-word) representation of FP. Nos.

[^0]: ${ }^{\circ}$ How to order 3 Fields in a Word?
 $+1 . x x x x x x x x x x_{\text {two }}{ }^{*} \mathbf{2 s y y y}_{\text {two }}$
 o "Natural": Sign, Fraction, Exponent?

 - Problem: If want to sort using integer compare operations, won't work:
 - 1.0×2^{20} vs. 1.1×2^{10}; latter looks bigger!

 | 0 | 10000 | 10100 |
 | :--- | :--- | :--- | :--- |

 ${ }^{\circ}$ Exponent, Sign, Fraction?

 - Need to get sign first, since negative < positive
 ${ }^{\circ}$ Therefore order is Sign Exponent Fraction $1.0 \times 10^{20}>1.1 \times 10^{10}$

 | S | Exponent | Significand |
 | :--- | :--- | :--- |

