
COMP3221 lec20-fp-II.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 20 : Floating Point Number
Representation – II

http://www.cse.unsw.edu.au/~cs3221

September, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec20-fp-II.2 Saeid Nooshabadi

Overview
° IEEE – 754 Standard

• Implied Hidden 1

• Representation for 0

°Decimal to Floating Point conversion, and
vice versa

°Big Idea: Type is not associated with data

°ARM floating point instructions, registers

COMP3221 lec20-fp-II.3 Saeid Nooshabadi

Review: IEEE 754 Fl. Pt. Standard (#1/3)

°Summary (single precision):
031

S Exponent
30 23 22

Significand

1 bit 8 bits 23 bits
° (-1)S x (1 + Significand) x 2(Exponent-127)

°Double precision identical, except with
exponent bias of 1023

°Hidden 1 (implied)

COMP3221 lec20-fp-II.4 Saeid Nooshabadi

Review: IEEE 754 Fl. Pt. Standard (#2/3)

°Scientific notation in binary!
±1.F x 2 ± e

°Sign Magnitude for the fixed part
(-1)s x 1.F x 2 ±e

°Hidden 1 of the significand
(-1)s x 1. fffffffffffffffffffffff x 2 ±e

°Excess notation for the exponent
(-1)s x 1.fffffffffffffffffffffff x 2exp - 127

°Ordering the fields so integer compare
works on FP

COMP3221 lec20-fp-II.5 Saeid Nooshabadi

Representing the Significand Fraction
° In normalized form, fraction is either:
1.xxx xxxx xxxx xxxx xxxx xxx

or
0.000 0000 0000 0000 0000 000 (for Zero)

°Trick: If hardware automatically places
1 in front of binary point of normalized
numbers, then get 1 more bit for the
fraction, increasing accuracy “for free”

1.xxx xxxx xxxx xxxx xxxx xxx
becomes

(1).xxx xxxx xxxx xxxx xxxx xxxx
• Comparison OK; “subtracting” 1 from both

Hidden Bit

COMP3221 lec20-fp-II.6 Saeid Nooshabadi

How differentiate from Zero in Trick Format?
° (1).0000 ... 000 => . 0000 ... 0000

(0).0000 ... 000 => . 0000 ... 0000

0 –Big 00000

0 >–Big 00000

0.00000
and not 1.00000 X2-127

1.00000 x 2Exp

031
0 00000000
30 23 22

00000000000000000000000

1 bit 8 bits 23 bits

° Solution: Reserve most negative (value 0)
exponent to be only used for Zero; rest are
normalized so prepend an implied 1

° Convention is

(– Big = 127 Sig=00000000 in
biased notation

COMP3221 lec20-fp-II.7 Saeid Nooshabadi

Understanding the Significand (#1/2)

°Method 1 (Fractions):
• In decimal: 0.34010 => 34010/100010

=> 3410/10010

• In binary: 0.1102 => 1102/10002 = 610/810
=> 112/1002 = 310/410

• Advantage: less purely numerical, more
thought oriented; this method usually
helps people understand the meaning of
the significand better

COMP3221 lec20-fp-II.8 Saeid Nooshabadi

Understanding the Significand (#2/2)

°Method 2 (Place Values):
• Convert from scientific notation

• In decimal: 1.6732 = (1x100) + (6x10-1) +
(7x10-2) + (3x10-3) + (2x10-4)

• In binary: 1.1001 = (1x20) + (1x2-1) +
(0x2-2) + (0x2-3) + (1x2-4)

• Interpretation of value in each position
extends beyond the decimal/binary point

• Advantage: good for quickly calculating
significand value; use this method for
translating FP numbers

COMP3221 lec20-fp-II.9 Saeid Nooshabadi

Example: Converting Binary FP to Decimal

°Sign: 0 => positive

°Exponent:
• 0110 1000two = 104ten

• Bias adjustment: 104 - 127 = -23

°Significand:
• 1 + 1x2-1+ 0x2-2 + 1x2-3 + 0x2-4 + 1x2-5 +...
=1+2-1+2-3 +2-5 +2-7 +2-9 +2-14 +2-15 +2-17 +2-22 +2-23

= 1.0 + 0.6661175

0 0110 1000 101 0101 0100 0011 0100 0011

°Represents: 1.6661175ten*2-23 ~ 1.986*10-7

(about 2/10,000,000)
COMP3221 lec20-fp-II.10 Saeid Nooshabadi

Continuing Example: Binary to ???

° Convert 2’s Comp. Binary to Integer:
0011 0100 0101 0101 0100 0011 0100 0011

0011 01 0 0 0 1 0 1 0101 0100 0011 0100 0011

0011 0100 0101 0101 0100 0011 0100 0011

4 U C C

ldrblo r4, [r5], #-835

° Convert Binary to Instruction:

° Convert Binary to ASCII:

229+228+226+222+220+218+216+214+29+28+26+ 21+20

= 878,003,011ten

3 1 0 0 0 1 0 1 83545

COMP3221 lec20-fp-II.11 Saeid Nooshabadi

Big Idea: Type not associated with Data

° What does bit pattern mean:

• 1.986 *10-7? 878,003,011? “4UCC”?
ldrblo r4, [r5], #-835?

° Data can be anything; operation of instruction
that accesses operand determines its type!

• Side-effect of stored program concept:
instructions stored as numbers

° Power/danger of unrestricted addresses/
pointers: use ASCII as Fl. Pt., instructions as
data, integers as instructions, ...
(Leads to security holes in programs)

0011 0100 0101 0101 0100 0011 0100 0011

COMP3221 lec20-fp-II.12 Saeid Nooshabadi

Converting Decimal to FP (#1/3)

°Simple Case: If denominator is an
exponent of 2 (2, 4, 8, 16, etc.), then
it’s easy.

°Show IEEE 754 representation of -0.75
• -0.75 = -3/4

• -11two/100two -0.11two/1.00two = -0.11two

• Normalized to -1.1two x 2-1

• (-1)S x (1 + Significand) x 2(Exponent-127)

• (-1)1 x (1 + .100 0000 ... 0000) x 2(126-127)

1 0111 1110 100 0000 0000 0000 0000 0000

COMP3221 lec20-fp-II.13 Saeid Nooshabadi

Converting Decimal to FP (#2/3)

°Not So Simple Case: If denominator is
not an exponent of 2.

• Then we can’t represent number precisely,
but that’s why we have so many bits in
significand: for precision

• Once we have significand, normalizing a
number to get the exponent is easy.

• So how do we get the Significand of a
never ending number?

COMP3221 lec20-fp-II.14 Saeid Nooshabadi

Converting Decimal to FP (#3/3)
°Fact: All rational numbers have a
repeating pattern when written out in
decimal (eg 1/7 =0.142857142857…)

°Fact: This still applies in binary as well
(eg 1/111 =0.001001001…)

°To finish conversion:
• Write out binary number with repeating
pattern.

• Cut it off after correct number of bits
(different for single vs double precision).

• Derive Sign, Exponent and Significand
fields.

COMP3221 lec20-fp-II.15 Saeid Nooshabadi

Hairy Example (#1/2)

°How to represent 1/3 in IEEE 754?

°1/3
= 0.33333…10

= 0.25 + 0.0625 + 0.015625 + 0.00390625 +
0.0009765625 + …

= 1/4 + 1/16 + 1/64 + 1/256 + 1/1024 + …

= 2-2 + 2-4 + 2-6 + 2-8 + 2-10 + …

= 0.0101010101… 2 * 20

= 1.0101010101… 2 * 2-2 (Normalized)

COMP3221 lec20-fp-II.16 Saeid Nooshabadi

Hairy Example (#2/2)

°1/3 = 1.0101010101… 2 * 2-2

°Sign: 0

°Exponent = -2 + 127 = 12510=011111012

°Significand = 0101010101…

0 0111 1101 0101 0101 0101 0101 0101 010

COMP3221 lec20-fp-II.17 Saeid Nooshabadi

What’s this stuff good for? Mow Lawn?
°Robot lawn mower: “Robomow RL-800”
°Surround lawn, trees with perimeter wire

°Sense tall grass to spin blades faster:
up to 5800 RPM

°Slow
if senses
object, stop
if bumps

°US$700

http://www.robotic-lawnmower.com

Friendly Robotics
of Even Yehuda,
Israel,

COMP3221 lec20-fp-II.18 Saeid Nooshabadi

Representation for +/- Infinity

° In FP, divide by zero should produce +/-
infinity, not overflow.

° Why?
• OK to do further computations with infinity

e.g., 1/(X/0) = (1/ ∞) = 0 is a valid Operation

or, X/0 > Y may be a valid comparison

(Ask math prof.)

° IEEE 754 represents +/- infinity
• Most positive exponent reserved for infinity

• Significands all zeroes

COMP3221 lec20-fp-II.19 Saeid Nooshabadi

Two Representation for 0!

°Represent 0?
• exponent all zeroes

• significand all zeroes too

• What about sign?
•+0: 0 00000000 00000000000000000000000
•-0: 1 00000000 00000000000000000000000

°Why two zeroes?
• Helps in some limit comparisons

• Ask math prof.

COMP3221 lec20-fp-II.20 Saeid Nooshabadi

Special Numbers

°What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- infinity
255 nonzero ???

°Professor Kahan had clever ideas;
“Waste not, want not”

• We will talk about Exp=0,255 & Significand
!=0 later

COMP3221 lec20-fp-II.21 Saeid Nooshabadi

Recall: arithmetic in scientific notation

Addition:

° 3.2 x 104 + 2.3 x 103 => common exp

°= 3.2 x 104 + 0.23 x 104 => add

°= 3.43 x 104 => normalize and round

° ~ 3.4 x 104

Multiplication:

°3.2 x 104 x 2.3 x 105

°= 3.2 x 2.3 x 109 = 7.36 x 109 ~ 7.4 x 109

COMP3221 lec20-fp-II.22 Saeid Nooshabadi

Basic Fl. Pt. Addition Algorithm
•Much more difficult than with integers
•For addition (or subtraction) of X to Y (X<Y):
(1) Compute D = ExpY - ExpX (align binary point)

(2) Right shift (1+SigX) D bits=>(1+SigX)*2(ExpX-ExpY)

(3) Compute (1+SigX)*2(ExpX - ExpY) + (1+SigY)

Normalize if necessary; continue until MS bit is 1
(4) Too small (e.g., 0.001xx...)

left shift result, decrement result exponent
(4’) Too big (e.g., 101.1xx…)

right shift result, increment result exponent

(5) If result significand is 0, set exponent to 0

COMP3221 lec20-fp-II.23 Saeid Nooshabadi

FP Addition/Subtraction Problems

°Problems in implementing FP add/sub:
• If signs differ for add (or same for sub),
what will be the sign of the result?

°Question: How do we integrate this
into the integer arithmetic unit?

°Answer: We don’t!

COMP3221 lec20-fp-II.24 Saeid Nooshabadi

ARM’s Floating Point Architecture (#1/4)

°Separate floating point instructions:
• Single Precision:
fcmps, fadds, fsubs, fmuls, fdivs

• Double Precision:
fcmpd, faddd, fsubd, fmuld, fdivd

°These instructions are far more
complicated than their integer
counterparts, so they can take much
longer.

COMP3221 lec20-fp-II.25 Saeid Nooshabadi

ARM’s Floating Point Architecture (#2/4)

°Problems:
• It’s inefficient to have different
instructions take vastly differing amounts
of time.

• Generally, a particular piece of data will
not change from FP to int, or vice versa,
within a program. So only one type of
instruction will be used on it.

• Some programs do no floating point
calculations

• It takes lots of hardware relative to
integers to do Floating Point fast

COMP3221 lec20-fp-II.26 Saeid Nooshabadi

ARM Floating Point Architecture (#3/4)
° ARM Solution: Make completely separate Co-

processors that handles only IEEE-754 FP.

° Coprocessor 10 (for SP) & 11 (for DP):
• Actually a Single hardware used differently for

Single Precision and Double Precision
• contains 32 32-bit registers: S0 – S31
• Arithmetic instructions use this register set
• separate load and store: flds and fsts

(“Float loaD Single Coprocessor 10”, “Float STore
…”)

• Double Precision: even/odd pair overlap one DP
FP number: s0/s1 = d0, s2/s3 = d1, … , s30/s31 =d15

• separate double load and store: fldd and fstd
(“Float loaD Double Coprocessor 11”, “Float STore
…”)

COMP3221 lec20-fp-II.27 Saeid Nooshabadi

ARM Floating Point Architecture (#4/4)

°ARM Solution:
• Processor: handles all the normal stuff
• Coprocessor 10 & 11: handles FP and only FP;
• more coprocessors?… Yes, later
• Today, cheap chips may leave out FP HW
(Example: Chip on Lab’s DSLMU Board)

° Instructions to move data between main
processor and coprocessors:
•fmsr (Sn = Rd), fmrs (Rd = Sn), etc.

°Check ARM instruction reference manual
on CD-ROM for many, many more FP
operations.

COMP3221 lec20-fp-II.28 Saeid Nooshabadi

“In Conclusion…”
°Floating Point numbers approximate
values that we want to use.

° IEEE 754 Floating Point Standard is most
widely accepted attempt to standardize
interpretation of such numbers ($1T)

°New ARM registers(s0-s31), instruct.:
• Single Precision (32 bits, 2x10-38… 2x1038):

fcmps, fadds, fsubs, fmuls, fdivs
• Double Precision (64 bits , 2x10-308…2x10308):

fcmpd, faddd, fsubd, fmuld, fdivd
°Type is not associated with data, bits
have no meaning unless given in context

