COMP 3221
Microprocessors and Embedded Systems
Lectures 22 : Fractions http://www.cse.unsw.edu.au/~cs3221

September, 2003
Saeid Nooshabadi
Saeid@unsw.edu.au
COMP3211 lec22-fraction. 1

Review: Special Numbers

${ }^{\circ}$ What have we defined so far?
(Single Precision)

Exponent	Significand	Object
0	0	0
0	nonzero	Denorm
$1-254$	anything	$+/-$ fl. pt. \#
255	0	$+/-$ infinity
255	nonzero	NaN

[^0]Review: Floating Point Representation
${ }^{\circ}$ Single Precision and Double Precision

31302322				
	Exponent	Significand		
1 bit	8 bits	23 bits		
3130	Exponent 2019 Significand			
S				
1 bit 11 bits 20 bits				
32 bits				

${ }^{\circ}(-1)^{\mathrm{S}} \times\left(1+\right.$ Significand) $\times 2^{\text {(Exponent-Bias) }}$
COMP3211 lec22-fraction. 2

Understanding the Ints/Floats (\#1/2)
${ }^{\circ}$ Think of ints as having the binary point on the right

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{D}_{31}\left|\mathrm{D}_{30}\right| \mathrm{D}_{29} \mid & & \ldots & \mathrm{D}_{0} \\
\hline
\end{array}
$$

- Represents number (unsigned)
- $D_{31} \times 2^{31}+D_{30} \times 2^{30}+D_{29} \times 2^{29}+\ldots+D_{0} \times 2^{0}$
${ }^{\circ}$ In Float the Binary point is not fixed (Floats!)
-1.1000--- $\times 2^{2} \rightarrow 00110.000---$
$\cdot 1.1000---2^{1} \rightarrow 0011.0000---$
$\cdot 1.1000---\times 2^{0} \rightarrow 001.10000---$
$\cdot 1.1000---\times 2^{-1} \rightarrow 00.110000---$
$\cdot 1.1000---2^{-2} \rightarrow 0.0110000---$
compr211 1ec2.2.faction.4 The Binary point is not fixed!

Understanding the Ints/Floats (\#2/2)

${ }^{\circ}$ The sequential Integer numbers are separated by a fixed values of 1

${ }^{\circ}$ The sequential Floating numbers are not separated by a fixed value.

- The separation changes exponentially

Representing Fraction

${ }^{\circ}$ Imagine the binary point in the middle

${ }^{\circ}$ Represents number

$-D_{15} \times 2^{15}+D_{14} \times 2^{14}+\ldots+D_{0} \times 2^{0}+D_{-1} \times 2^{-1}+\ldots+D_{-16} \times 2^{-16}$

- Numbers in the range: 0.0 to ($2^{16}-1$). $\left(1-2^{-16}\right)$
- $\mathbf{2}^{32}$ fractional numbers with step size $=\mathbf{2 - 1 6}^{\mathbf{1 6}}$
- $2.5_{10}=10.1_{2}$ => 00000000000000101000000000000000
${ }^{\circ}$ Same arithmetic mechanism for Fixed

Overflow?
Rounding?
The position of the binary point is maintained in software сомP3211 lec22-fraction. 7

Saeid Nooshabadi

Fractions with Equal Distribution

${ }^{\circ} \mathrm{Ho}$ do we represent this?

```
-1.0
```


${ }^{\circ}$ Accuracy is at a premium and not the range

- We want to use all the bits for accuracy
- Situation in many DSP application: the small range and high accuracy.
- We used FIXed Point Fractions.

Understanding the Ints/Fixed/Floats

${ }^{\circ}$ Think of ints as having the binary point on the right

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{D}_{3}\left|\mathrm{D}_{30}\right| \mathrm{D}_{29} \mid & & \ldots & \mathrm{D}_{0} \\
\hline
\end{array}
$$

${ }^{\circ}$ Think of the bits of the significand in Float as binary fixed-point value
$=1+D_{-1} \times 2^{1.1}+D_{-2} \times 2^{2 \cdot 2}+D_{.3} \times 2^{-3}+D_{4} \times 2^{-4}+D_{.5} \times 2^{-5}+\ldots+D_{23} \times{ }^{2 \cdot 23}$
${ }^{\circ}$ The exponent causes the binary point to float.
${ }^{\circ}$ Since calculations are limited to finite precision, must round result

- few extra bits carried along in arithmetic
- four rounding modes

COMP3211 lec22-fraction. 8

Ints, Fixed-Point \& Floating Point

${ }^{\circ}$ ints represent $\mathbf{2}^{\mathrm{N}}$ equally spaced whole

 numbers- fixed binary point at the right
${ }^{\circ}$ Moving binary point to the left can represent 2^{N} equally spaced fractions
${ }^{\circ}$ Exponent effectively shifts the binary point
- imagine infinite zeros to the right and left
- represent 2^{M} equally spaced values in each of 2^{K} exponentially increasing intervals

What about Multiplication for Fractions

${ }^{\circ}$ Imagine the binary point on the left

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \mathrm{D}_{-1} & \mathrm{D}_{-2} & \ldots & \mathrm{D}_{-16} & \mathrm{D}_{-17} & \ldots & \mathrm{D}_{-32} \\
\hline
\end{array}
$$

${ }^{\circ}$ ARM multiplication instruction won't work
-mul Rd, Rm, Rs ; Rd = Rm * Rs

- (Lower precision multiply instructions simply throws top 32 bits away).
- Top 32 bits are more important. (eg. 0.11 *. 10 $=0.1100=0.11$)

Recall: Multiplication Instructions

${ }^{\circ}$ ARM provides multiplication instruction
-mul Rd, Rm, Rs ; Rd = Rm * Rs

- (Lower precision multiply instructions simply throws top 32 bits away)

Multiply-Long for Fractions

- Instructions are
- MULL which gives RdHi,RdLo:=Rm*Rs
${ }^{\circ}$ Full 64 bit of the result now matter
- Need to specify whether operands are signed or unsigned
- Syntax of new instructions are:
- umull RdLo,RdHi,Rm,Rs ;RdHi,RdLo:=Rm*Rs
- smull RdLo, RdHi, Rm, Rs ;RdHi,RdLo:=Rm*Rs (Signed)
- Example: umull r4, r5, r3, r2; r5:r4:=r3*r2
- Not generated by the general compiler. (Needs Hand coding).
- DSP compilers generate them
- We can ignore the RdLo with some loss of accuracy

Fractions: Negative Powers of Two (\#1/2)

```
* 12 = 2' = 110
\circ}0.\mp@subsup{1}{2}{}=\mp@subsup{2}{}{-1}=0.\mp@subsup{5}{10}{}=1/
0.01 2 = 2-2 = 0.25 10 =1/4
\circ}0.0012 = 2-3 = 0.125 10 =1/8
*}0.0001 2 = 2-4 = 0.0625 10 =1/16
    \circ}0.1\mp@subsup{1}{2}{=2-1}+2-2=0.\mp@subsup{5}{10}{2-2}+0.2\mp@subsup{5}{10}{}=0.7\mp@subsup{5}{10}{}=1/2+1/4=3/4
```



```
    \circ}0.00110011001100 -----
    = 2-3 +2-4 + 2-7 + 2-8 + 2-11 + 2-12 + 2-15 + 2-16 + ---
    = 1/8 + 1/16 + 1/128 + 1/256 + 1/2048 + 1/4096 + ----
    =0.125 }10+0.062\mp@subsup{5}{10}{}+0.03125+0.015625+0.000976562
    + 0.00048828125 + ---
    =0.2 10
COMP3211 lec22-fraction.13

Fractions: Negative Powers of Two (\#2/2)
\[
\begin{aligned}
& { }^{\circ} 0.2_{10}=0.00110011001100---{ }_{2} \rightarrow \\
& { }^{\circ} 0.1_{10}=0.2_{10} / 2=0.000110011001100---{ }_{2} \\
& { }^{\circ} 0.3_{10}=0.2_{10}+0.1_{10}=0.0011001100110011---{ }_{2}+ \\
& 0.0001100110011001---{ }_{2} \\
& =0.0100110011001100---{ }^{2} \\
& 0.1_{10}=0.2_{10} / 2=0.000110011001100---{ }_{2}
\end{aligned}
\]

\section*{Add/Sub \& Shift for Multiplication of Fractions}
\({ }^{\circ}\) Recall multiplication of integers via add/sub and shift:
- Assume two integer variables \(f\) and \(g\)
\[
\begin{aligned}
& \left.\mathrm{f}=3 * \mathrm{~g} I^{*} \mathrm{f}=(2+1) \times \mathrm{x} * / \mathrm{(inC}\right) \\
& \mathrm{add} \mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 2 \mathrm{ls} \# 1 ; \mathrm{v} 1 \stackrel{\mathrm{v}}{=} \mathrm{v} 2+\mathrm{v} 2 \text { *2 (in ARM) }
\end{aligned}
\]
\({ }^{\circ}\) What about: \(\mathrm{f}=\mathrm{g} * 0.3\) ( f and g are both integers)
- Example: \(\mathrm{g}=10 \rightarrow \mathrm{f}=10^{*} 0.3=3\)
\[
\begin{aligned}
& g=12 \rightarrow f=12^{*} 0.3=3 \\
& g=12 \rightarrow f=12^{*} 0.3=3
\end{aligned}
\]
\(\cdot 0.3_{10}=0.010011001100110011001100110011001100--{ }_{2}\) \(\rightarrow 0.010011001100110011001100110011001100_{2}\)
\(f=g \times 2^{-2}+g \times 2^{-5}+g \times 2^{-6}+g \times 2^{-9}+g \times 2^{-10}+g \times 2^{-13}+g \times 2^{-14}+---+g \times 2^{-29}+\). sub v1, v2, v2 lsr \#2 ;v1 =g* \((1-1 / 4)=g * 3 / 4\) ( 0.11 )
add v1, v1, v1 lsr \#4 ; \(\mathrm{g}^{*} 0.11001100\)
Approximation
add v1, v1, v1 lsr \#8 ; \(\mathrm{g}^{* 0.1100110011001100}\)
add v1, v1, v1 lsr \#16;g*0.11001100110011001100110011001100
mov v1, v1 lsx \#4 ; \({ }^{*} 0.000011001100110011001100110011001100\)
add v1, v1, v2 lsr \#2 ;g*0.0100110011001100110011001100110011
comp3211 lec22-fraction. 15

Loss of Accuracy in Multiplication with Fraction
\({ }^{\circ}\) But bits drop of from the right side as \(g\) shifts right
- Loosing the shifted bits could produce wrong result (loss of accuracy)
- In reality we would have like to keep the shifted bits and include them in the additions ( 64 bit addition).


How to get the Carrys in successive additions?
Not always easy, needs a lot of house keeping in software. comp3211 lec22-fraction. 16 Think about it!

Loss of Accuracy Example in Decimal
```

*}\mathrm{ Considering the Shifted Digits Example:
123999 < 0.1111 = 123999 × (0.1 + 0.01 + 0.001)
= 12399.9+
1239.99
123.999
\# 13763
Not Considering the Shifted Digits Example:
123999 }\times0.1111=123999 \times (0.1 + 0.01 + 0.001
= 12399.
1239.
\#

```
    \({ }^{\circ}\) Off by 2

\section*{Recall: Division}
\({ }^{\circ}\) No Division Instruction in ARM
\({ }^{\circ}\) Division has two be done in software through a sequence of shift/ subtract / add instruction.
- General A/B implementation (See Experiment 3)
- For B in A/B a constant value (eg 10) simpler technique via Shift, Add and Subtract is available (Will discuss it Now)

\section*{Division by a Constant}
\begin{tabular}{|c|c|c|}
\hline \[
{ }^{\circ} A / B=A(1 / B)
\] & & -The lines marked with a \\
\hline 10000000000000000000000000000000 & \# & '\#' are the special cases \\
\hline 01010101010101010101010101010101
01000000000000000000000000 & * & \(2^{\text {n }}\), which are easily \\
\hline 00110011001100110011001100110011 & & dealt with just by simple \\
\hline 00101010101010101010101010101010 & & ifting to right by \(n\) bits \\
\hline od 100100100100100100100100 & & ts. \\
\hline 0000111000111000111000011100011100 & & -The lines marked with a \\
\hline 00011001100110011001100110011001 & & \\
\hline 00010111010001011101000101110100 & S & ve a simple \\
\hline 0001010101010101010101010101010101 & * & repeating pattern. \\
\hline 0001001001001001001 & & \\
\hline 00010001000100010001000100010001 & & -The lines marked with \\
\hline 00010000000000000000000000000000 & \# & '\$' have more complex \\
\hline 00001111000011110000111100001111 & & repeating pattern \\
\hline 000011010111100010100001101011110 & s & ision ca \\
\hline 00001100110011001100110011001100 & & \\
\hline 0000110000110000110000110000110 & & erformed by successive \\
\hline 00001011101000101110100010111010 & \$ & right shifts \& additions \\
\hline 00001010010100010101010010101010101010 & & and/subtractions \\
\hline
\end{tabular}

\section*{Division by a Constant Regular Patterns}


Division by a Constant Example (by 10)
\[
\mathrm{B}=1 / 10_{10}=0.00011001100110011001100110011001---_{2}
\]

Assume \(A \rightarrow\) a1 and \(A(1 / B) \rightarrow\) al
sub a1, a1, a1 lsr \#2 ;a1 = A* (1-1/4) =A*3/4 (0.11)
add a1, a1, a1 lsr \#4 ;A*0.11001100
add a1, a1, a1 lsr \#8 ;A*0.1100110011001100
add a1, a1, a1 lsr \#16;A*0.11001100110011001100110011001100
mov a1, a1 lsr \#3 ;A*0.00011001100110011001100110011001100
\({ }^{\circ}\) But what about bits drop of from the right side as A shifts right?
\({ }^{\circ}\) This could cause the answer to be less by 1
\({ }^{\circ}\) This can be corrected!
\({ }^{\circ}\) Since correct divide by 10 would rounds down (eg 98/10=9), the remainder (8) can be calculated by:
A - \((\mathrm{A} / 10) * 10=0 . .9\)
\({ }^{\circ}\) If bit drop offs from the right cause \((A / 10)\) to be less by 1 then \(\mathrm{A}-(\mathrm{A} / 10) * 10=10 \ldots 19\). So add 1 to computed (A/10) COMP3211 lec22-fraction. 21

\section*{Division by a Constant 10 Function}
\(B=1 / 10_{10}=0.00011001100110011001100110011001--{ }_{2}\)
Assume \(A \rightarrow\) a1 and \(A(1 / B) \rightarrow\) a1
Div10:
; takes argument in al
; returns quotient in a1, remainder in a2
- cveles colld he saved if onlv divide or remainder is realired
sub a2, a1, \#10 ; keep (A-10) for later
sub a1, a1, a1 lsr \#2 ;a1 = A* (1-1/4) = A*3/4 (0.11)
add a1, a1, a1 lsr \#4 ;A*0. 11001100
add a1, a1, a1 lsr \#8 ;A*0.1100110011001100
add a1, a1, a1 lsr \#16;A*0.11001100110011001100110011001100
mov a1, a1 lsr \#3 ;A*0.00011001100110011001100110011001100
add a3, a1, a1, lsl \#2 ; (A/10)*5
subs a2, a2, a3, lsl \#1 ; calc (A-10) - (A/10)*10, <0 or 0>?
addpl a1, a1, \#1 ; fix-up quotient
addmi \(\mathrm{a} 2, \mathrm{a}, \# 10 \quad\); fix-up remainder \((-10 \ldots-1)+10 \rightarrow(0 \ldots 9)\)
mov pc, lr

\section*{Uns. Int to Decimal ASCII Converter via div10}
- Aim: To convert an unsigned integer to Decimal ASCII
\({ }^{\circ}\) Example: \({ }^{100011001100110011001100110011001 ~} \rightarrow\)

\section*{\({ }^{\circ}\) Algorithm:}
- Divide it by \(\mathbf{1 0}\), yielding a quotient and a remainder. The remainder (in the range \(0-9\) ) is the last digit (right most) of the decimal. Convert remainder to to ASCII.
- Repeat division with new quotient until it is zero
\({ }^{\circ}\) Example: \(10011001100110011001100110011001 / 10=\) 1111010111000010100011110101 (257698037) and Remainder of 111 (7)So:
\begin{tabular}{lll}
\({ }^{\circ} 10011001100110011001100110011001\) & \((2576980377)\) & \\
\({ }^{\circ} 1111010111000010100011110101\) & \((257698037)\) & 7 \\
\({ }^{\circ} 1100010010011011101001011\) & \((25769803)\) & 7 \\
\({ }^{\circ} 1100010010011011101001011\) & \((2576980)\) & 3
\end{tabular}

\section*{Uns. Int to Decimal ASCII Converter Function} utoa:
; function entry: On entry al has the address of memory ; to store the ASCII string and al contains the integer - to convert
stmfd sp!,\{v1, v2, lr\};save some v1, v2 and ret. address mov v1, a1 ; preserve arg al over following func. calls mov a1, a2
bl div10 ; a1 = a1 / 10, a2 = a2 \% 10
mov v2, a2 ; move remainder to v2
cmp a1, \#0 ; quotient non-zero?
movne a2, a1 ; quotient to a2...
mov a1, v1 ; buffer pointer unconditionally to al
blne utoa ; conditional recursive call to utoa
add v2, v2, \#'0' ; convert to ascii (final digit
strb v2, [a1], \#1 ; store digit at end of buffer
ldmf \(s p!,\{v 1, v 2, p c\}\) function exit-restore and return
COMP3211 lec22-fraction. 24

Uns. Int to Decimal ASCII Converter in C
```

void utoa (char* Buf, int n) {
if (n/10) utoa(Buf, n/10);
*Buf=n%10 +'0';
Buf++;
}

```
"And in Conclusion.."
\({ }^{\circ}\) ints represent \(2^{\mathrm{N}}\) equally spaced whole numbers. fixed binary point at the right
\({ }^{\circ}\) Moving binary point to the left can represent \(2^{N}\) equally spaced fractions
\({ }^{\circ}\) Exponent represent \(2^{\mathrm{M}}\) equally spaced values in each of \(\mathbf{2}^{\mathrm{K}}\) exponentially increasing intervals
\({ }^{\circ}\) Division by a constant via shift rights and adds/subs.
- Beware of errors due to loss shifted bits from the right (lack of 64 bit addition).```


[^0]:    ${ }^{\circ}$ Professor Kahan had clever ideas;
    "Waste not, want not"

