
COMP3221 lec27-exception-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 27: Exceptions & Interrupts - I

http://www.cse.unsw.edu.au/~cs3221

September, 2003

Saeid Nooshabadi

saeid@unsw.edu.au
COMP3221 lec27-exception-I.2 Saeid Nooshabadi

Overview

° Instruction Set Support for Exceptions

°Privileged vs User modes of
operation.

°Handling a Single Interrupt

COMP3221 lec27-exception-I.3 Saeid Nooshabadi

Review
° I/O gives computers their 5 senses

° I/O speed range is million to one

°Processor speed means must
synchronize with I/O devices before use

°Polling works, but expensive
• processor repeatedly queries devices

° Interrupts works, more complex

COMP3221 lec27-exception-I.4 Saeid Nooshabadi

Definitions for Clarification

°Exception: signal marking that
something “out of the ordinary” has
happened and needs to be handled.
Caused by internal and external
sources

° Interrupt: Externally asynchronous
exception (by I/Os)

°Software Interrupt (SWI): User defined
synchronous exception

°Trap: Processor’s diversion to a code
to handle exception

COMP3221 lec27-exception-I.5 Saeid Nooshabadi

Example of Exception Sources in ARM

°Externally generated interrupts

°An attempt by the processor to execute an
undefined instruction

°Accessing privileged operating system
functions via software interrupts (SWI).
•Print
•Access Ethernet

COMP3221 lec27-exception-I.6 Saeid Nooshabadi

I/O Interrupt

°An I/O interrupt is like an undefined
instruction exceptions except:

• An I/O interrupt is “asynchronous”

• More information needs to be conveyed

°An I/O interrupt is asynchronous with
respect to instruction execution:

• I/O interrupt is not associated with any
instruction, but it can happen in the middle
of any given instruction

• I/O interrupt does not prevent any
instruction from completion

COMP3221 lec27-exception-I.7 Saeid Nooshabadi

Architecture Support for Exceptions

°Save the PC for return
• But where?

°Where to go when Exception occurs?

°How to determine the Cause of
exception?

°How to handle exceptions?

COMP3221 lec27-exception-I.8 Saeid Nooshabadi

Exception Sources in ARM
° Reset: Occurs when the processor reset pin is

asserted. (Signalling power-up)

° Undefined Instruction: Occurs if the processor, does
not recognize the currently executing instruction.

° Software Interrupt (SWI): This is a user-defined
intentional synchronous interrupt instruction.

° Prefetch Abort: Occurs when the processor attempts
to execute an instruction that was not fetched,
because the address was illegal.

° Data Abort: Occurs when a data transfer instruction
attempts to load or store data at an illegal address.

° IRQ: Occurs when the processor external Interrupt
ReQuest pin is asserted

° FIQ: Occurs when the processor external Fast
Interrupt reQuest pin is asserted

COMP3221 lec27-exception-I.9 Saeid Nooshabadi

ARM Modes of Operations
° 10000 User Normal user code

° 10001 FIQ Processing fast interrupts

° 10010 IRQ Processing standard interrupts

° 10011 SVC Processing software interrupts (SWIs)

° 10111 Abort Processing memory faults

° 11011 Undef Handling undefined instruction traps

° 11111 System Running privileged operating
system tasks

CPSR

Privileged Modes

Non-Privileged
Mode

COMP3221 lec27-exception-I.10 Saeid Nooshabadi

CPSR Encoding for Operating Modes & Interrupts

mode Mode of Operation

T ARM vs Thumb State (We only use ARM in
COMP3221

F FIQ Fast interrupts Disable bit

I IRQ Normal interrupt Disable bit

NZCV Condition Flags

CPSR

Changing mode bits is only possible in
privileged modes

COMP3221 lec27-exception-I.11 Saeid Nooshabadi

User Mode vs Privileged Modes
°User Applications run in User Mode

°Privileged modes, used to
• service interrupts

• exceptions

• access protected resources (via SWI
Instruction)

°Privileged modes User mode OK

°User mode Privileged modes NOT
OK

• Only possible through Controlled
mechanisms: SWI, Exceptions, Interrupts

COMP3221 lec27-exception-I.12 Saeid Nooshabadi

Rationale Privileged Modes

°Privileged modes protect system from
getting trashed by user.

°Some Instructions can only be
executed in privileged mode

°Example: User can’t directly read/write
information from disk I/Os.

°Why not allow direct access to non-
disk I/O devices in user mode?

°Komodo on DSLMU runs in Privileged
mode. Can access everything while
running Komodo

COMP3221 lec27-exception-I.13 Saeid Nooshabadi

I/O Requires Privileged Modes

°Transmitter/receiver Status and Data
words are in privileged data space;
thus we must be in privileged mode to
read or write them.

°Device drivers run in privileged mode.

°To access the I/O devices the user
application has to make a Supervisor
call to the OS via SWI instruction

°Komodo on DSLMU Allows access to
I/O ports in User mode!

• Security hole !

COMP3221 lec27-exception-I.14 Saeid Nooshabadi

Support for ARM Modes of Operations

COMP3221 lec27-exception-I.15 Saeid Nooshabadi

Switching between Modes (User to FIQ Mode)

EXCEPTION

User mode CPSR copied to FIQ mode SPSR

cpsr

r15 (pc)
r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8
r7

r4
r5

r2
r1
r0

r3

r6

r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

Registers in use
User Mode

spsr_fiq
cpsr

r7

r4
r5

r2
r1
r0

r3

r6

r15 (pc)
r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8

Registers in use
FIQ Mode

spsr_fiq

Return address calculated from
User mode PC value and stored

in FIQ mode LR

COMP3221 lec27-exception-I.16 Saeid Nooshabadi

Exception Handling Mechanism (#1/2)
°The processor’s response to an exception

• Copies the Current Program Status Register
(CPSR) into the appropriate mode Saved
Program Status Register(SPSR)

• Sets the appropriate CPSR bits
- Mode bits : set appropriately. maps in the

appropriate banked registers for that mode.
- I bit : to disable interrupts. IRQs are disabled once

any other exception occurs
- F bit: FIQs are also disabled when a FIQ occurs.

• Stores the address of the return instruction
(generally PC – 4) in LR_<mode>.

• Sets the PC to the appropriate vector
address.This forces the branch to the
appropriate exception handler.

COMP3221 lec27-exception-I.17 Saeid Nooshabadi

Exception Handling Mechanism (#2/2)
°Returning from an exception handler

• Restore the CPSR from the SPSR_<mode>.
• Restore the PC using the return address
stored in LR_<mode>.

• These can be achieved in a single instruction movs pc, lr or
subs pc, lr, #4
• Adding the S flag (update condition codes) to
a data processing instruction when in a
privileged mode with the PC as the destination
register, also transfers the SPSR to CPSR

• Same thing for Load Multiple instruction
(using the ^ qualifier)ldmfd sp! {r0-r12, pc}^

COMP3221 lec27-exception-I.18 Saeid Nooshabadi

° When an exception
occurs, the core:
• Copies CPSR into

SPSR_<mode>
• Sets appropriate CPSR

bits
Interrupt disable flags if
appropriate.

• Maps in appropriate
banked registers

• Stores the “return
address” in LR_<mode>

• Sets PC to vector address

Exception Handling and the Vector Table

0x00000000

0x0000001C
0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004

Reset
Undefined Instr

FIQ
IRQ

Reserved
Data Abort

Prefetch Abort
SWISWI

° To return, exception handler needs to:
• Restore CPSR from SPSR_<mode>
• Restore PC from LR_<mode> via movs pc, lr or subs pc, lr, #4

COMP3221 lec27-exception-I.19 Saeid Nooshabadi

Software Interrupt (SWI)

° In effect, a SWI is a user-defined instruction,

° A planned Exception from User Application to
request privileged O/S services via SWI
Supervisor call.

° It causes:
• A switch to privileged Supervisor Mode.
• A branch to an exception trap to the SWI exception

vector (0x00000008)
• a SWI exception handler to be called.

° The handler can then examine the comment
field of the instruction to decide what operation
has been requested.

COMP3221 lec27-exception-I.20 Saeid Nooshabadi

SWI Invocation

°How does user invoke the OS?
•swi instruction: invoke the OS code
(Go to 0x00000008, change to privileged
mode)

• By software convention,number xxx in
swi xxx has system service requested:
OS performs request

COMP3221 lec27-exception-I.21 Saeid Nooshabadi

Crossing the System Boundary

°System loads user program into
memory and ‘gives’ it use of the
processor

°Switch back
• swi

- request service

- I/O

• exception (und. Inst)

• Interrupt

Proc Mem

I/O Bus

status reg.
data reg.

System

User

COMP3221 lec27-exception-I.22 Saeid Nooshabadi

Reading Material
°Experiment 5 Documentation

°Steve Furber: ARM System On-Chip;
2nd Ed, Addison-Wesley, 2000, ISBN:
0-201-67519-6. Chapter 5.

°ARM Architecture Reference Manual
2nd Ed, Addison-Wesley, 2001, ISBN: 0-
201-73719-1, Part A , Exceptions,
chapter A2 Section 6

COMP3221 lec27-exception-I.23 Saeid Nooshabadi

SWI Example under GNU Debugging tools
7;Print to console a single char in R0 swi 0x0
;Read a single char from Kboardinto R0 swi 0x4
;Print nul-terminated string prt_str to the consoleldr r0,=prt_strswi 0x2
Swi 0x11 ; Terminate the program
.dataprt_str: .asciz “Hello World:\n"

COMP3221 lec27-exception-I.24 Saeid Nooshabadi

CPSR and SPSR Transfer Instructions

° MRS and MSR transfer content CPSR/SPSR to
/from a general purpose register.

• All of status register, or just the flags, can be
transferred.

•mrs Rd, <psr> ; Rd <psr>
•msr <psr>,Rm ; <psr> Rm
•msr <psrf>,Rm ; <psrf> Rm
Where <psr> = CPSR, CPSR_all, SPSR or SPSR_all
and <psrf> = CPSR_flg or SPSR_flg

° Also an immediate form
•msr <psrf>,#Imm32
• a 32-bit immediate, of which the 4 most significant bits

are written to the flag bits.

CPSR

COMP3221 lec27-exception-I.25 Saeid Nooshabadi

Modifying CPSR

° Unused reserved bits, may be used in
future, therefore:

• they must be preserved when altering PSR
• the value they return must not be relied upon

when testing other bits.

° Thus read-modify-write strategy must be
followed when modifying any PSR:

• Transfer PSR to register using MRS
• Modify relevant bits
• Transfer updated value back to PSR using MSR

° Note:
• In User Mode, all bits can be read but only the

flag bits can be written to.

CPSR

COMP3221 lec27-exception-I.26 Saeid Nooshabadi

Questions Raised about Interrupts

°Which I/O device caused interrupt?
• Needs to convey the identity of the device
generating the interrupt

°Can avoid interrupts during the interrupt
routine?

• What if more important interrupt occurs
while servicing this interrupt?

• Allow interrupt routine to be entered again?

°Who keeps track of status of all the
devices, handle errors, know where to
put/supply the I/O data?

COMP3221 lec27-exception-I.27 Saeid Nooshabadi

4 Responsibilities leading to OS

°The I/O system is shared by multiple
programs using the processor

°Low-level control of I/O devices is
complex because requires managing a
set of concurrent events and because
requirements for correct device
control are often very detailed

° I/O systems often use interrupts to
communicate information about I/O
operations

°Would like I/O services for all user
programs under safe control

COMP3221 lec27-exception-I.28 Saeid Nooshabadi

4 Functions OS must provide
°OS guarantees that user’s program
accesses only the portions of I/O device
to which user has rights (e.g., file access)

°OS provides abstractions for accessing
devices by supplying routines that
handle low-level device operations

°OS handles the interrupts generated by
I/O devices (and other exceptions
generated by a program)

°OS tries to provide equitable access to
the shared I/O resources, as well as
schedule accesses in order to enhance
system performance

COMP3221 lec27-exception-I.29 Saeid Nooshabadi

Things to Remember

°Privileged Mode v. User Mode: OS can
provide security and fairness

°swi: provides a way for a programmer
to avoid having to know details of each
I/O device.

°To be acceptable, interrupt handler
must:

• service all interrupts (no drops)

• service by priority

• make all users believe that no interrupt has
occurred

