COMP 3221

Microprocessors and Embedded Systems

Lectures 28: Exceptions & Interrupts - II

http://www.cse.unsw.edu.au/~cs3221

October, 2003 Saeid Nooshabadi

saeid@unsw.edu.au

Saeid Nooshabadi

Overview

- Instruction Set Support for Exceptions
- °Role of O/S in Handling Exceptions
- Prioritized Exceptions
- °Re-entrant Exception Routine

COMP3221 lec28-exception-II.2

Saeid Nooshabadi

Reset

SWI

Data Abort

Reserved

IRO

FIO

Prefetch Abort

0x00000004 Undefined Instr

Review: Support for ARM Modes of Operations

Review: Exception Handling and the Vector Table

0x00000000

800000008

0x000000C

0x00000010

0x00000014

0x0000018

0x0000001C

- When an exception occurs, the core:
 - Copies CPSR into SPSR <mode>
 - Sets appropriate CPSR bits
 - Interrupt disable flags if appropriate.
 - Maps in appropriate banked registers

 - Stores the "return address" in LR_<mode>
 - Sets PC to vector address
- Single instruction stored at these locations should be a branch to a handler
- o To return, exception handler needs to:
 - Restore CPSR from SPSR <mode>
 - Restore PC from LR_<mode> via movs pc, 1r or subs pc 1r, #4

Review: Privileged vs User Mode

- ° Privileged Modes vs. User Mode: OS can provide security and fairness
- °swi: provides a way for a programmer to avoid having to know details of each I/O device.
- °To be acceptable, Exception handler must:
 - service all Exceptions (no drops)
 - service by priority
 - make all users believe that no Exception has occurred

COMP3221 lec28-exception-II.5

Saeid Nooshabadi

Review: OS: I/O Requirements

- °The OS must be able to prevent:
 - The user program from communicating with the I/O device directly
- °If user programs could perform I/O directly:
 - No protection to the shared I/O resources
- °3 types of communication are required:
 - The OS must be able to give commands to the I/O devices
 - The I/O device notify OS when the I/O device has completed an operation or an error
 - Data transfers between memory and I/O device

COMP3221 lec28-exception-II.6

Saeid Nooshabadi

Review: Crossing the System Boundary

System loads user program into memory and 'gives' it use of the processor

- °Switch back
 - swi
 - request service
 - I/O
 - exception (und. Inst)
 - Interrupt

Instruction Set Support for OS (#1/2)

- ° How to turn off interrupts during Exception routine?
- ° Bits in CPSR determines whether or not interrupts disabled:
 - Interrupt Request bit (I) (1 ⇒ disabled, 0 ⇒ enabled)
 - Once an exception occurs (I) bit sets to to 1 automatically
 - Return from exception restores the original value
 - <u>Fast Interrupt Request bit (F)</u> only gets disabled if an fast Interrupt occurs

31 28	27 8	7	6	5	4	0_
NZCV	unused	ΙF	=	Т	mode	

Instruction Set Support for OS (#2/2)

- °How to prevent user program from turning off interrupts (forever)?
- * Interrupt Request bit (I) and Fast Interrupt Request bit (F) bits can only be changed from the privileged modes

COMP3221 lec28-exception-II.9

Saeid Nooshabadi

Multiple Simultaneous Exceptions/Interrupts

°Problem: What if Data Abort exception and an I/O interrupt (printer ready, for example) come in both at the same time?

°Options:

- drop any conflicting interrupts/ exceptions: unrealistic, they may be important
- simultaneously handle multiple interrupts exceptions: unrealistic, may not be able to synchronize them (such as with multiple I/O interrupts)
- queue them for later handling: sounds good

COMP3221 lec28-exception-II.10 Saeid Nooshabadi

Exceptions Prioritization in ARM

Exception Type	Priority (1=High, 6=Low)
Reset	1
Data Abort	2
Fast Interrupt (FIQ)	3
Interrupt (IRQ)	4
Prefetch Abort	5
Software Interrupt (SW	l) 6
Undefined Instruction	6

FIQ Priority

- °Placing the Data Abort exception above the FIQ exception in the priority list ensures that the Data Abort is actually registered before the FIQ is handled.
- °The Data Abort handler is entered first but control is then passed immediately to the FIQ handler.
- °Once the FIQ has been handled, control returns to the Data Abort Handler.
- This means that the data transfer error does not escape detection as it would if the FIQ were handled first.

COMP3221 lec28-exception-II.11 Saeid Nooshabadi COMP3221 lec28-exception-II.12 Saeid Nooshabadi

Hardware support for FIQ

- ° Extra register set r12_fiq r8_fiq in FIQ bank would mean that they don't need to be saved.
- ° That means faster processing
- ° FIQ vector address at 0x0000001C is the last vector, and therefore can start executing immediately without a branch instruction

0x00000000	Reset
0x00000004	Undefined Instr
0x00000008	SWI
0x000000C	Prefetch Abort
0x00000010	Data Abort
0x00000014	Reserved
0x00000018	IRQ
0x0000001C	_
COMP3221 lec28-exception-	

Saeid Nooshabadi

ARM Support for Preempting Exceptions

- ° ARM Architecture Support to simplify software:
 - An Exception Process sets IRQ bits (disables it).
 - No further IRQ interrupt is possible
 - However, No exception can disable FIQ interrupt
- ° If an FIQ interrupt comes while servicing an exception
 - Take FIQ immediately
 - Return to interrupted exception code as soon as no more FIQ Interrupt
 - State information for the preempted exception are saved on banked registers and as well as some internal registers

Preempting Exceptions by Interrupts

- Ouestion: Suppose we're dealing with a computer running a nuclear facility. What if we're handling an Floating Point Divide by 0 Exception and a Nuclear Meltdown Imminent interrupt comes in?
- ° Answer: We need to categorize and allow some interrupts preempt other Exceptions so we can handle them in order of urgency: emergency vs. luxury.

COMP3221 lec28-exception-II.14

Reading Material

- °Experiment 5 Documentation
- Steve Furber: ARM System On-Chip;
 2nd Ed, Addison-Wesley, 2000, ISBN:
 0-201-67519-6. Chapter 5.
- ARM Architecture Reference Manual
 2nd Ed, Addison-Wesley, 2001, ISBN: 0 201-73719-1, Part A, Exceptions,
 chapter A2 Section 6

COMP3221 lec28-exception-II.15 Saeid Nooshabadi COMP3221 lec28-exception-II.16 Saeid Nooshabadi

So Many Devices One FIQ/IRQ

- ° Two interrupt request signals FIQ and IRQ never enough for all of the I/O devices
- ° Need a mechanism to attach multiple devices to the same IRQ pin.
- Solution: Use Interrupt Controller to attach multiple devices to the same IRQ pin.
 - Interrupt Controller controls how multiple peripherals can interrupt the ARM processor. Essentially, the interrupt controller acts as a large AND-OR gate
 - In the event of an IRQ a combination of hardware and software techniques are required to detect the sources of interrupt and provide a system of priority and queuing.

COMP3221 lec28-exception-II.17

Saeid Nooshabadi

Saeid Nooshabadi

IRO

ARM

Processor

Core

CPSR 7

Interrupt Controller in DSLMU/Komodo

- ° IRQ Status: Indicates rasing interrupt.
- ° Prioritization: in software

Saeid Nooshabadi

DSLMU/Komodo IRQ Status/Enable Regs

Bit	Mode	Function
7	R/W	Push-button switch S2 on the Expansion Board
6	R/W	Push-button switch S3 on the Expansion Board
5	R/W	Serial port transmitter ready
4	R/W	Serial port receiver ready
3	_	(Reserved)
2	R/W	Xilinx Virtex-E interrupt request
1	R/W	Xilinx Spartan-XL interrupt request
0	R/W	Timer Compare interrupt request

IRO status reg. address = 0x10000018

IRQ Enable reg. address = 0x1000001C COMP3221 lec28-exception-ll.19

IRQ Interrupt Levels in ARM?

°What are they?

- °It depends what the ARM chip is inside of: differ by app: GameBoy, Digital Set top Box, Digital Answering Machine, Digital Satellite Decoder, Pocket PC, Mobile **Phone**
- ARM architecture and Interrupt controller enables priorities for different I/O events

Improving Data Transfer Performance

- °Thus far: OS give commands to I/O, I/O device notify OS when the I/O device completed operation or an error
- °What about data transfer to I/O device?
 - Processor busy doing loads/stores between memory and I/O Data Register
- °Ideal: specify the block of memory to be transferred, be notified on completion?
 - Direct Memory Access (DMA): a simple computer transfers a block of data to/from memory and I/O. interrupting upon done

COMP3221 lec28-exception-II.21

Saeid Nooshabadi

Example: FIQ Code for DMA controller

°DMA code from Disk Device to Memory

```
.data
 Count:
          .word 4096
          .space 4096
 Start:
          .text
 Initial: ldr a1, =Count
         ldr a1, [a1]
                       ; No. chars
          ldr a2, =Start ; next char
          ldr a3, DiskControl
 Wait:
          tst a3,1
                         ; select Ready
                         ; spinwait
          beg Wait
          ldrb a4, DiskData; get byte
          strb a4, [a2], #1; transfer,
                              : Start++
                a1, a1,#1
          subs
                             : Count--
                             ;next char
          bne
                Wait
DMA "computer" in parallel with CPU
COMP3221 lec28-exception-II.22
```

Re-entrant Interrupt Routine?

- ° Prioritization and queuing of interrupts attached to IRQ Interrupt controller requires one interrupt preempting another interrupt (reentrant interrupts)
- All exceptions set IRQ disable interrupt bit (I)
 - FIQ can interrupt IRQ and other exceptions
- ° FIQ sets FIQ disable interrupt bit (F) as well
- Objective of the second of
- ° Interrupt service Routine needs to save:
 - Return address on lr irg for the pre-empted IRQ handler on IRQ Mode Stack
 - all registers that it is going to use on IRQ Mode Stack
 - Reset the IRQ disable bit
- ° Same thing for FIQ

Saeid Nooshabadi

Pre-empting Other Exceptions by IRQ?

- °All exceptions set IRQ disable interrupt bit (I)
 - FIQ can interrupt IRQ and other exceptions
- *How allow IRQ interrupts to interrupt other exceptions (other than IRQ and FIQ exceptions)?
- Interrupt service Routine needs to save:
 - all registers that it is going to use on IRQ Mode Stack
 - Reset the IRQ disable bit

IRQ Controller Support for Queuing and Priority

°IRQ Controller Support to simplify software:

- An Interrupt Process cannot be preempted by Exception <u>at same</u> or lower <u>"level"</u>
- When an interrupt is handled, take the highest priority interrupt on the queue
- If a higher priority interrupt comes in while servicing a lower priority one
 - Preempt the lower priority one and take the higher priority one
 - current priority value is pushed onto a first-in lastout stack and the current priority is updated to the higher priority.
 - Return to interrupted code as soon as no more Interrupts at a higher level
 - On return the current interrupt level is updated with the last stored interrupt level from the stack.

Things to Remember

- ° Privileged Mode v. User Mode: OS can provide security and fairness
- Exceptions prioritization in the case of multiple concurrent exceptions.
- °Multiple devices can be connected to single IRQ interrupt via an Interrupt Controller.
- °Re-entrant Interrupt: One interrupt preempting another interrupt.
 - Prioritization and queuing of interrupts in hardware or software is required for this to work.

COMP3221 lec28-exception-II.26

Saeid Nooshabadi