COMP 3221

Microprocessors and Embedded Systems

Lectures 29: I/O Interfacing Examples - I

http://www.cse.unsw.edu.au/~cs3221

October, 2003
Saeid Nooshabadi
saeid@unsw.edu.au

Saeid Nooshaba

Overview

- °Parallel Interfacing
- °Serial Interfacing
 - UART
 - RS232

COMP3221 lec29-io-examples-I.2

Saeid Nooshabadi

Anatomy: 5 components of any Computer

Review: Buses in a PC: Connect a few devices

Review: I/O Device Examples and Speeds

°I/O Speed: bytes transferred per second (from mouse to display: million-to-1)

° Device	Behavior	Partner (K	Data Rate (bytes/sec)
Keyboard	Input	Human	0.01
Mouse	Input	Human	0.02
Line Printer	Output	Human	1.00
Floppy disk	Storage	Machine	50.00
Laser Printer	Output	Human	100.00
Magnetic Disk	Storage	Machine	10,000.00
Network-LAN	I or O	Machine	10,000.00
Graphics Display	Output	Human	30,000.00

COMP3221 lec29-io-examples-I.5

Saeid Nooshabadi

Review: DSLMU I/O Addressing

0.00					
Offset	Mode	Port Name	Function		
0x00	R/W	Port A	Bidirectional data port to LEDs, LCD, etc.		
0x04	R/W	Port B	Control port (some bits are read only)		
0x08	R/W	Timer	8-bit free-running 1 kHz timer		
0x0C	R/W	Timer Compare	Allows timer interrupts to be generated		
0x10	RO	Serial RxD	Read a byte from the serial port		
0x10	WO	Serial TxD	Write a byte to the serial port		
0x14	WO	Serial Status	Serial port status port		
0x18	R/W	IRQ Status	Bitmap of currently-active interrupts		
0x1C	R/W	IRQ Enable	Controls which interrupts are enabled		
0x20 COMP3221 lec29	WO -io-examples-I.6	Debug Stop	Stops program execution when written to Saeid Nooshabadi		

Parallel Interfacing

- ° In Parallel multiple bytes are transferred between the processor and external devices.
 - Mem ←→ Processor 1, 2 or 4 bytes
 - LCD ←→ Processor 1 byte
 - The advantage:speed all data bits are transferred simultaneously via the system bus (or an extension of this bus).

Parallel Interfacing Problems

- ° More cost: one wire for each bit + 1 bit for clock (strobe).
- ° May suffer from skew problem due to unequal time delay for each signal.

Used for high data rates over short distances <few cm

COMP3221 lec29-io-examples-I.8

Saeid Nooshabadi

Serial Interfacing

- o In serial I/O, the data bits are sent one at a time across a single line.
 - The advantage of serial I/O is lower cost (in terms of the number of wires connecting the microcomputer to peripheral device)

Parallel ←→ Serial Interfacing

Since communication within a microprocessor takes place over the system bus in parallel form, there is obviously a need for parallel-to serial (and serial-to parallel) conversion when interfacing to serial devices.

Asynchronous Serial Communication

- Used in character oriented data transmission between a microprocessor and an external device
 - Transmitter and Receiver each has its own clock running at the same frequency
 - How to synchronize two clocks so to sample in the middle of the data?

Making Asyn. Transmission Work

°Receiver Synchronisation:

- The transmission of first bit should starts with a transition on the data line (1→0)
- send an extra 'start' bit (= 0) before sending the 8-bit data,
- data line is always set back to 1 at the end.
- 1 → 0 transition always occurs at the start of each transmission.
- the receive clock now samples 9 bits (start + 8 data bits),
- the gap (idle time) between successive groups of 9 bits can change
- Character wide synchronisation (Asynchronous)

Saeid Nooshabadi

COMP3221 lec29-io-examples-I.11

Saeid Nooshabadi

Receiver Clock Synchronisation Issues

- The receiver clock can be made equal to the baud rate
- clock must be very accurate in order to sample the incoming bit stream in the centre of its cycle.
- The sample point needs to be very close to the centre of the bit cell for reliable data recovery.
- The actual variation from the centre on the bit cell is referred to as ratchet error.

Improving Receiver Clock Synchronisation

- ° If the clock is made 16 times the baud rate, then the ratchet error can be relaxed from ±1 % to ±5 %
- $^{\circ}$ Rachet relaxes to ± 25 % for 64 times the baud rate).

Parallel ←→ Serial Conversion

- Asynchronous data transmission uses a special device called Universal Asynchronous Receiver Transmitter (UART).
 - UART is used to simultaneously transmit and receive serial data
 - performs the appropriate parallel/serial conversions and inserting or checking the extra bits used to keep the serial data synchronised.
 - UART typically configured as 2-4 I/O addresses: input/output status port(s), and output/input data port(s).
 - Bytes sent as 8-bit parallel data to the output data address by the computer are converted into a standard-format serial bit stream for transmission by a transmitter inside the UART
 - Similarly, an incoming serial bit stream is detected by a receiver inside the UART and converted into parallel data that can be read by the computer from the UART's input data address.

Full Duplex VS Half Duplex Data Transmission

- Simultaneous conversion of an incoming and an outgoing serial data stream is called full duplex
 - It requires two data carriers (TxD, and RxD)
 - Implemented with three wires: one for the outgoing stream (TxD), one for the incoming stream (RxD), and the third for a common ground line.
 - The UART does provide for standard full duplex handshaking conventions.
- Observe of the half duplex allows two-way communications, hence the name duplex, but only one direction is active at a time.

COMP3221 lec29-io-examples-I.16 Saeid Nooshabadi

Synchronous Serial Data Transmission

- °In Asynchronous data transmission TX and RX clocks are unsynchronised
 - Inefficient (for each 7 bits we send 3 4 extra bits)
 - Synhronisation across characters
- On Synchronous Data Transmission TX and RX clocks are synchronised
 - A common shared clock, (I²C), or clocking information embedded in the data stream (USB, Ethernet)
 - Fast (many bytes send before a re-synchronisation)
 - Synchronisation across frames vs characters

DSLMU/KOMODO Serial I/Os

- DSLMU Serial Port 1: memory-mapped terminal (Connected to the PC for program download and debugging)
 - Read from PC Keyboard (receiver); 2 device regs
 - Writes to PC terminal (transmitter); 2 device regs

Serial Data Channels on AT91 on DSLMU Board

- Two Universal Synchronous Asynchronous Receiver Transmitter (USART)
 - Programmable Baud rate
 - Can generate interrupts

DSLMU/Komodo Serial I/Os

- °Status register rightmost bit (0): Ready
 - Receiver: Ready==1 means character in Data Register not yet been read (or ready to be read);
 - $1 \Rightarrow 0$ when data is read from Data Reg
 - Transmitter: Ready==1 means transmitter is ready to accept a new character;
 - 0 ⇒ Transmitter still busy writing last char
- ° Data register rightmost byte has data
 - Receiver: last char from keyboard; rest = 0
 - Transmitter: when write rightmost byte, writes char to display

COMP3221 lec29-io-examples-L20 Saeid Nooshabad

DSLMU/KOMODO Serial I/Os Interrupts

- ° IRQ Enable: Enables individual interrupts
- ° IRQ Status: Indicates rasing interrupt.
- ° When a char is received or sent an interrupt is raised COMP3221 lec29-io-examples-I.21 Saeid Nooshabadi

RS232C Definitions

° The parity bit:

- · is used as an error check.
- The total number of '1's in the character+parity is made either odd (odd parity) or even (even parity).
- Any single-bit error makes the parity bit appear wrong.

° The stop bit(s):

- exist to allow for the case where one frame is transmitted immediately after another.
- The stop bits, which are always 1, ensure the next start bit's 1 → 0 transition. (1, 11/2 or 2 bits)

° Voltage values:

COMP3221 lec29-io-examples-I.23

- >±5 should be used (Normally >±13 used)
- +5 represents logic low (space) and -5 logic high (mark)
- ° Physical characteristic:
 - 25 way connector, (9 way is more popular now)

Saeid Nooshabadi

Asyn. Serial Communication Standard (RS232C)

- Standard for communication of ASCII-coded character data between devices such as data computers and modems
 - Low speed and cheap
- ° Standard definition:
 - The voltages used to represent 0 and 1 (Electrical)
 - The rate at which data is sent.
 - · The format of the data sent.
 - The connectors to be used (physical and mechanical)
 - Extra control signals that may be used.
- ° Typical data rate ((baud rate) are: 75, 300, 1200, 2400, 9600, 19200 and 115,000 bits/sec

From UART to RS232-C

- ° The UART is responsible for certain parts in RS232-C standard specifications:
 - framing and transmitting TX data
 - receiving and extracting the RX data
 - baud rate generation
- ° The electrical signaling is handled by a driver
 - logic inversion and voltage translation

COMP3221 lec29-io-examples-I.24

Non Standard RS-232 Standard

- ° RS-232 has earned the distinction of being the most non-standard standard in electronics!.
 - in general, two RS-232 devices, when connected together, won't work.
- ° RS-232 was designed for connecting DTEs ("data terminal equipment") (like PC) to DCEs ("data communication equipment") (like modem).
- ° A DTE has a male and a DCE a female connector
 - Corresponding pins in DTE connector connect to corresponding pins in DCE connector.
- ° The IBM PC looks like a DTE with a male connector
- o The DSLUM board also looks like a DTE with a male connector
- Output
 How to connect PC to DSLMU?
 - Use "null modem"; cable that crosses TxD and RxD wires.

"And In Conclusion"

- ° Parallel Interfacing
 - Fast but expensive
- ° Serial Interfacing
 - Slow but inexpensive
- ° Synchronous Serial Interfacing
 - Fast and more efficient but requires clock synchronisation
- Asynchronous Serial Interfacing
 - Slower and less efficient but does not require clock synchronisation
- ° RS232 Standard
 - The most widely used serial communication standard for communication between DTE and DCE devices

Reading Material

°Reading Material:

- http://www.beyondlogic.org/serial/serial. htm
- http://www.sangoma.com/signal.htm
- Hardware Reference Manual on CD-ROM

COMP3221 lec29-io-examples-I.26 Saeid Nooshabadi

COMP3221 lec29-io-examples-I.27

Saeid Nooshabadi