
COMP3221 lec33-Cache-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 33: Cache Memory - I

http://www.cse.unsw.edu.au/~cs3221

October, 2003

Saeid Nooshabadi

saeid@unsw.edu.au
Some of the slides are adopted from David Patterson (UCB) COMP3221 lec33-Cache-I.2 Saeid Nooshabadi

Outline

°Memory Hierarchy

°On-Chip SRAM

°Direct-Mapped Cache

COMP3221 lec33-Cache-I.3 Saeid Nooshabadi

Review: ARM System Architecture

Fast on-Chip RAM
External Lower Speed SRAM, Slower DRAM,
Much Slower Flash-ROM

COMP3221 lec33-Cache-I.4 Saeid Nooshabadi

Memory Hierarchy (#1/5)

°Processor
• executes programs

• runs on order of nanoseconds to
picoseconds

• needs to access code and data for
programs: where are these?

°Disk
• HUGE capacity (virtually limitless)

• VERY slow: runs on order of milliseconds

• so how do we account for this gap?

COMP3221 lec33-Cache-I.5 Saeid Nooshabadi

Memory Hierarchy (#2/5)

°Memory (DRAM)
• smaller than disk (not limitless capacity)

• contains subset of data on disk: basically
portions of programs that are currently
being run

• much faster than disk: memory accesses
don’t slow down processor quite as much

• Problem: memory is still too slow
(hundreds of nanoseconds)

• Solution: add more layers
- On-chip Memory

- On-chip Caches
COMP3221 lec33-Cache-I.6 Saeid Nooshabadi

Memory Hierarchy (#3/5)
Processor

Size of memory at each level

Increasing
Distance

from Proc.,
Decreasing
cost / MB

Level 1

Level 2

Level n

Level 3

. . .

Higher

Lower

Levels in
memory

hierarchy

COMP3221 lec33-Cache-I.7 Saeid Nooshabadi

Memory Hierarchy (#4/5)

Control

Datapath

Memory

Processor

M
em
ory

Memory
Memory

M
em
ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:
Size:
Cost:

Registers

Cache L1
SRAM

Cache L2
SRAM

RAM/ROM
DRAM EEPROM

Hard Disk

COMP3221 lec33-Cache-I.8 Saeid Nooshabadi

Memory Hierarchy (#5/5)

° If level is closer to Processor, it must
be:

• smaller

• faster

• subset of all lower levels (contains most
recently used data)

• contain at least all the data in all higher
levels

°Lowest Level (usually disk) contains
all available data

COMP3221 lec33-Cache-I.9 Saeid Nooshabadi

Memory Hierarchy

°Purpose:
• Faster access to large memory from processor

Processor
(active)

Computer

Control
(“brain”)
Datapath
(“brawn”)

Memory
(passive)
(where
programs,
data live
when
running)

Devices
Input

Output

Keyboard,
Mouse

Display,
Printer

Disk,
Network

COMP3221 lec33-Cache-I.10 Saeid Nooshabadi

Memory Hierarchy Analogy: Library (#1/2)

°You’re writing an assignment paper
(Processor) at a table in the Library

°Library is equivalent to disk
• essentially limitless capacity

• very slow to retrieve a book

°Table is memory
• smaller capacity: means you must return
book when table fills up

• easier and faster to find a book there
once you’ve already retrieved it

COMP3221 lec33-Cache-I.11 Saeid Nooshabadi

Memory Hierarchy Analogy: Library (#2/2)
°Open books on table are on-chip
memory/cache

• smaller capacity: can have very few open
books fit on table; again, when table fills
up, you must close a book

• much, much faster to retrieve data

° Illusion created: whole library open on
the tabletop

• Keep as many recently used books open
on table as possible since likely to use
again

• Also keep as many books on table as
possible, since faster than going to library
shelves

COMP3221 lec33-Cache-I.12 Saeid Nooshabadi

Memory Hierarchy Basis
°Disk contains everything.

°When Processor needs something,
bring it into to all higher levels of
memory.

°On-chip Memory/Cache contains copies
of data in memory that are being used.

°Memory contains copies of data on disk
that are being used.

°Entire idea is based on Temporal
Locality: if we use it now, we’ll want to
use it again soon (a Big Idea)

COMP3221 lec33-Cache-I.13 Saeid Nooshabadi

On Chip SRAM Memory

°Provides fast (zero wait state access
to program and data)

° It occupies a portion of address space.

°Requires explicit management by the
programmers.

• Part of the program has to copy itself
from slow external slow memory (eg
flash-rom), into the internal on-chip ram
and start executing from there

• Works well for limited number of
programs where, the program behaviour
and space requirement is well defined.

COMP3221 lec33-Cache-I.14 Saeid Nooshabadi

DSLMU on-Chip RAM

External mem
area

External Flash
ROM

Int. SRAM

App #1
App #2

Applications are copied
from the FLASH ROM
to int. RAM to make
them go faster

Works only if there are
a few well behaved
applications

Schedul
er

App #3

COMP3221 lec33-Cache-I.15 Saeid Nooshabadi

A Case for Cache

°On-Chip SRAM requires explicit
management by the programmer

• Possible for an embedded system with
small number of well defined programs

• Not possible for a general purpose
processor with many programs, where
the application mix cannot be determined
in advanced

- Explicit memory management become
difficult

°We need a mechanism where the
copying from the slow external RAM to
Int. memory is automated by hardware
(Cache!)

COMP3221 lec33-Cache-I.16 Saeid Nooshabadi

Cache Design

°How do we organize cache?

°Where does each memory address
map to? (Remember that cache is
subset of memory, so multiple
memory addresses map to the same
cache location.) (Books from many
shelves are on the same table)

°How do we know which elements are
in cache?

°How do we quickly locate them?

COMP3221 lec33-Cache-I.17 Saeid Nooshabadi

Direct-Mapped Cache (#1/2)

° In a direct-mapped cache, each
memory address is associated with
one possible block within the cache

• Therefore, we only need to look in a
single location in the cache for the data
to see if it exists in the cache

• Block is the unit of transfer between
cache and memory

COMP3221 lec33-Cache-I.18 Saeid Nooshabadi

Direct-Mapped Cache (#2/2)

° Block size = 1 byte

° Cache Location 0 can be
occupied by data from:

• Memory location 0, 4, 8, ...

• In general: any memory location
that is multiple of 4

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

COMP3221 lec33-Cache-I.19 Saeid Nooshabadi

Issues with Direct-Mapped
° Since multiple memory addresses map to same

cache index, how do we tell which one is in there?

° Store the address information along with the data
in the cache

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

tt

address tag to check
have correct block

ttttttttttttttttttttttttttttttii
index to
select
block

Address from the processor

Compare address tag with
indexed value to check for match

COMP3221 lec33-Cache-I.20 Saeid Nooshabadi

Direct-Mapped with 1 Byte Blocks Example

block indexAddress tag

tag RAM

compare data

hit

address

data RAM

de
co

de
r

COMP3221 lec33-Cache-I.21 Saeid Nooshabadi

Reading Material
° Steve Furber: ARM System On-Chip; 2nd

Ed, Addison-Wesley, 2000, ISBN: 0-201-
67519-6. Chapter 10.

COMP3221 lec33-Cache-I.22 Saeid Nooshabadi

Issues with Direct-Mapped with Larger Blocks

°Since multiple memory blocks map to
same cache index, how do we tell which
one is in there?

°How do we select the bytes in the block?

°Result: divide memory address into three
fields

tttttttttttttttttttttttttttttioo
tag index byte
to check to offset
if have select within
correct block block block

COMP3221 lec33-Cache-I.23 Saeid Nooshabadi

Direct-Mapped with Larger Blocks Example

data RAMtag RAM

compare mux

datahit

address

Byte offsetblock indexAddress tag

COMP3221 lec33-Cache-I.24 Saeid Nooshabadi

Direct-Mapped Cache Terminology

°All fields are read as unsigned integers.

° Index: specifies the cache index (which
“row” or “line” of the cache we should
look in)

°Offset: once we’ve found correct block,
specifies which byte within the block
we want

°Tag: the remaining bits after offset and
index are determined; these are used to
distinguish between all the memory
addresses that map to the same
location

COMP3221 lec33-Cache-I.25 Saeid Nooshabadi

Direct-Mapped Cache Example (#1/3)

°Suppose we have a 16KB of data in a
direct-mapped cache with 4 word blocks

°Determine the size of the tag, index and
offset fields if we’re using a 32-bit
architecture (ie. 32 address lines)

°Offset
• need to specify correct byte within a block

• block contains 4 words
16 bytes
24 bytes

• need 4 bits to specify correct byte
COMP3221 lec33-Cache-I.26 Saeid Nooshabadi

Direct-Mapped Cache Example (#2/3)
° Index: (~index into an “array of
blocks”)

• need to specify correct row in cache

• cache contains 16 KB = 214 bytes

• block contains 24 bytes (4 words)

• # rows/cache = # blocks/cache (since
there’s one block/row)

= bytes/cache
bytes/row

= 214 bytes/cache
24 bytes/row

= 210 rows/cache

• need 10 bits to specify this many rows

COMP3221 lec33-Cache-I.27 Saeid Nooshabadi

Direct-Mapped Cache Example (#3/3)

°Tag: use remaining bits as tag
• tag length = mem addr length

- offset
- index

= 32 - 4 - 10 bits
= 18 bits

• so tag is leftmost 18 bits of memory address

°Why not full 32 bit address as tag?
• All bytes within block need same address (-4b)

• Index must be same for every address within a
block, so its redundant in tag check, thus can
leave off to save memory (- 10 bits in this
example) COMP3221 lec33-Cache-I.28 Saeid Nooshabadi

Things to Remember
°We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

°So we create a memory hierarchy:
• each successively higher level contains
“most used” data from next lower level

• exploits temporal locality

°Locality of reference is a Big Idea

