
COMP3221 lec35-Cache-III.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 35: Cache Memory - III

http://www.cse.unsw.edu.au/~cs3221
October, 2003

Saeid Nooshabadi

saeid@unsw.edu.au
Some of the slides are adopted from David Patterson (UCB)

COMP3221 lec35-Cache-III.2 Saeid Nooshabadi

Outline

°Fully Associative Cache

°N-Way Associative Cache

°Block Replacement Policy

°Multilevel Caches (if time)

°Cache write policy (if time)

COMP3221 lec35-Cache-III.3 Saeid Nooshabadi

Review
°We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

°So we create a memory hierarchy:
• each successively higher level contains
“most used” data from next lower level

• exploits temporal locality

°Locality of reference is a Big Idea

COMP3221 lec35-Cache-III.4 Saeid Nooshabadi

Big Idea Review

°Mechanism for transparent movement
of data among levels of a storage
hierarchy

• set of address/value bindings
• address => index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0123
...

1 0 a b c d

000000000000000000 0000000001 1100address: tag index offset

COMP3221 lec35-Cache-III.5 Saeid Nooshabadi

Types of Cache Misses (#1/2)

°Compulsory Misses
• occur when a program is first started

• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

COMP3221 lec35-Cache-III.6 Saeid Nooshabadi

Types of Cache Misses (#2/2)

° Conflict Misses
• miss that occurs because two
distinct memory addresses map to
the same cache location

• two blocks (which happen to map
to the same location) can keep
overwriting each other

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0
1
2
3

• big problem in direct-mapped
caches

• how do we lessen the effect of
these?

COMP3221 lec35-Cache-III.7 Saeid Nooshabadi

Dealing with Conflict Misses
°Solution 1: Make the cache size bigger

• fails at some point

°Solution 2: Multiple distinct blocks can fit
in the same Cache Index?
0
1
2
3
4
5
6
7
8
9
A
B

0
0
1
1

COMP3221 lec35-Cache-III.8 Saeid Nooshabadi

Fully Associative Cache (#1/4)

°Memory address fields:
• Tag: same as before

• Offset: same as before

• Index: non-existent

°What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

COMP3221 lec35-Cache-III.9 Saeid Nooshabadi

Fully Associative Cache (#2/4)

°Fully Associative Cache (e.g., 32 B block)
• compare tags in parallel

Byte Offset

:

Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

Cache Tag
=

=
=

=

=
:

COMP3221 lec35-Cache-III.10 Saeid Nooshabadi

Fully Associative Cache (#3/4)

data RAMtag CAM

mux

datahit

address

CAM (Content Addressable memory): A RAM Cell with
in-built comparator

COMP3221 lec35-Cache-III.11 Saeid Nooshabadi

Fully Associative Cache (#4/4)

°Benefit of Fully Assoc Cache
• no Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache
• need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

COMP3221 lec35-Cache-III.12 Saeid Nooshabadi

Third Type of Cache Miss

°Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associate caches.

COMP3221 lec35-Cache-III.13 Saeid Nooshabadi

N-Way Set Associative Cache (#1/5)

°Memory address fields:
• Tag: same as before

• Offset: same as before

• Index: points us to the correct “row”
(called a set in this case)

°So what’s the difference?
• each set contains multiple blocks

• once we’ve found correct set, must
compare with all tags in that set to find
our data

COMP3221 lec35-Cache-III.14 Saeid Nooshabadi

N-Way Set Associative Cache (#2/5)
°2-Way Set Associative
Cache
Organisation data RAMtag RAM

compare mux

address

data RAMtag RAM

compare mux

datahit

de
co

de
r

de
co

de
r

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

COMP3221 lec35-Cache-III.15 Saeid Nooshabadi

N-Way Set Associative Cache (#3/5)

°Summary:
• cache is direct-mapped with respect to
sets

• each set is fully associative

• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

COMP3221 lec35-Cache-III.16 Saeid Nooshabadi

N-Way Set Associative Cache (#4/5)

°Given memory address:
• Find correct set using Index value.

• Compare Tag with all Tag values in the
determined set.

• If a match occurs, it’s a hit, otherwise a
miss.

• Finally, use the offset field as usual to
find the desired data within the desired
block.

COMP3221 lec35-Cache-III.17 Saeid Nooshabadi

N-Way Set Associative Cache (#5/5)

°What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

° In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc

• it’s Fully Assoc if it’s M-way set assoc

• so these two are just special cases of the
more general set associative design

COMP3221 lec35-Cache-III.18 Saeid Nooshabadi

Cache Organisation Comparison

direct-mapped

2-way

associative

cache size (Kbytes)

16 4
1

1/4

0

0.5

1

1.5

2

2.5

relative
performance

COMP3221 lec35-Cache-III.19 Saeid Nooshabadi

Degree of Associativity on 4KB Cache

associativity (ways)

1 2 4 8 16 32 64 128 256

performance

bandwidth

0

0.5

1

1.5

2

2.5

COMP3221 lec35-Cache-III.20 Saeid Nooshabadi

ARM3 Cache Organisation

data RAM

1024 x 32-bit word

decode

virtual address

[1:0]

[3:2]

[9:4]

0124531

hit data

[9:0]

byte
addresses

36

enable

tag CAM

64 entry

tag CAM

64 entry

tag CAM

64 entry

tag CAM

64 entry

user/supervisor

COMP3221 lec35-Cache-III.21 Saeid Nooshabadi

Reading Material
° Steve Furber: ARM System On-Chip; 2nd

Ed, Addison-Wesley, 2000, ISBN: 0-201-
67519-6. Chapter 10.

COMP3221 lec35-Cache-III.22 Saeid Nooshabadi

Block Replacement Policy (#1/2)

°Direct-Mapped Cache: index completely
specifies which position a block can go
in on a miss

°N-Way Set Assoc (N > 1): index
specifies a set, but block can occupy
any position within the set on a miss

°Fully Associative: block can be written
into any position

°Question: if we have the choice, where
should we write an incoming block?

COMP3221 lec35-Cache-III.23 Saeid Nooshabadi

Block Replacement Policy (#2/2)

°Solution:
• If there are any locations with valid bit off
(empty), then usually write the new block
into the first one.

• If all possible locations already have a
valid block, we must pick a replacement
policy: rule by which we determine which
block gets “cached out” on a miss.

COMP3221 lec35-Cache-III.24 Saeid Nooshabadi

Block Replacement Policy: LRU

°LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality => recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

COMP3221 lec35-Cache-III.25 Saeid Nooshabadi

Block Replacement Example

°We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

How many hits and how many misses
will there for the LRU block
replacement policy?

COMP3221 lec35-Cache-III.26 Saeid Nooshabadi

Block Replacement Example: LRU
°Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2
lru

lru

1 lru

loc 0 loc 1

4lru

set 0

set 1

0set 0

set 1

0 2set 0

set 1

0 2lruset 0

set 1

set 0

set 1
0
1 lru

lruset 0

set 1
0 4
1 lru

• 0: miss, bring into set 0 (loc 0)

• 2: miss, bring into set 0 (loc 1)

• 0: hit

• 1: miss, bring into set 1 (loc 0)

• 4: miss, bring into set 0 (loc 1, replace 2)

• 0: hit

COMP3221 lec35-Cache-III.27 Saeid Nooshabadi

Ways to Reduce Miss Rate

°Larger cache
• limited by cost and technology

• hit time of first level cache < cycle time

°More places in the cache to put each
block of memory - associativity

• fully-associative
- any block any line

• k-way set associated
- k places for each block

- direct map: k=1

COMP3221 lec35-Cache-III.28 Saeid Nooshabadi

Big Idea

°How chose between options of
associativity, block size, replacement
policy?

°Design against a performance model
• Minimize: Average Access Time

= Hit Time x Hit Rate + Miss Penalty x Miss
Rate

• influenced by technology and program
behavior

°Create the illusion of a memory that is
large, cheap, and fast - on average

COMP3221 lec35-Cache-III.29 Saeid Nooshabadi

Example

°Assume
• Hit Time = 1 cycle

• Miss rate = 5%

• Miss penalty = 20 cycles

°Avg mem access time = 1 + 0.05 x 20
= 2 cycle

COMP3221 lec35-Cache-III.30 Saeid Nooshabadi

Improving Miss Penalty

°When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles

°Today 1000 MHz Processor (1 ns per
clock cycle) and 100 ns to go to DRAM
⇒ 100 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

COMP3221 lec35-Cache-III.31 Saeid Nooshabadi

Analyzing Multi-level Cache Hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty = L2 Hit Time + L2 Miss Rate
* L2 Miss PenaltyAvg Mem Access Time =

L1 Hit Time + L1 Miss Rate * (L2 Hit Time +
L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

COMP3221 lec35-Cache-III.32 Saeid Nooshabadi

Typical Scale

°L1:
• size: tens of KB
• hit time: complete in one clock cycle

• miss rates: 1-5%

°L2:
• size: hundreds of KB
• hit time: few clock cycles

• miss rates: 10-20%

°L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

COMP3221 lec35-Cache-III.33 Saeid Nooshabadi

Example

°Assume
• L1 Hit Time = 1 cycle

• L1 Miss rate = 5%

• L2 Hit Time = 5 cycles

• L2 Miss rate = 15% (% L1 misses that miss)

• L2 Miss Penalty = 100 cycles

°L1 miss penalty = 5 + 0.15 * 100 = 20

°Avg mem access time = 1 + 0.05 x 20
= 2 cycle

COMP3221 lec35-Cache-III.34 Saeid Nooshabadi

Example: Without L2 Cache

°Assume
• L1 Hit Time = 1 cycle

• L1 Miss rate = 5%

• L1 Miss Penalty = 100 cycles

°Avg mem access time = 1 + 0.05 x 100
= 6 cycles

°3x faster with L2 cache

COMP3221 lec35-Cache-III.35 Saeid Nooshabadi

What to Do on a Write Hit?

°Write-through
• update the word in cache block and
corresponding word in memory

°Write-back
• update word in cache block
• allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating
that memory needs to be updated when
block is replaced

=> OS flushes cache before I/O !!! SO that
cache values become same as memory
values changed by I/O

Performance trade-offs?
COMP3221 lec35-Cache-III.36 Saeid Nooshabadi

Things to Remember (#1/2)
°Caches are NOT mandatory:

• Processor performs arithmetic

• Memory stores data

• Caches simply make data transfers go
faster

°Each level of memory hierarchy is just
a subset of next higher level

°Caches speed up due to temporal
locality: store data used recently

°Block size > 1 word speeds up due to
spatial locality: store words adjacent
to the ones used recently

COMP3221 lec35-Cache-III.37 Saeid Nooshabadi

Things to Remember (#2/2)

°Cache design choices:
• size of cache: speed vs. capacity

• direct-mapped vs. associative

• for N-way set assoc: choice of N

• block replacement policy

• 2nd level cache?

• Write through vs. write back?

°Use performance model to pick
between choices, depending on
programs, technology, budget, ...

