COMP 3221
Microprocessors and Embedded Systems
Lectures 35: Cache Memory - Il

http://www.cse.unsw.edu.au/~cs3221
October, 2003

Saeid Nooshabadi

saeild@unsw.edu.au

COMP3221 Iec35Cache’m%ome of the slides are adopted from David Patterson (UCB) ¢ .4 nooshabadi

Qutline

°Fully Associative Cache

°N-Way Associative Cache
°Block Replacement Policy
°Multilevel Caches (if time)

°Cache write policy (if time)

COMP3221 lec35-Cache-lil.2 Saeid Nooshabadi

Review

°We would like to have the capacity of
disk at the speed of the processor:
unfortunately this is not feasible.

°So we create a memory hierarchy:

»each successively higher level contains
“most used” data from next lower level

e exploits temporal locality

°Locality of reference is a Big Idea

Big ldea Review

°Mechanism for transparent movement
of data among levels of a storage
hierarchy
eset of address/value bindings
*address =>index to set of candidates
ecompare desired address with tag

eservice hit or miss
- load new block and binding on miss

address: index
_) 0000000001 &
W0x0—3 0x4-7 0x8-b Oxc-f
i 2 b R ——

WN

lypes ol Cache \Visses (#1/2)

°Compulsory Misses
eoccur when a program is first started

ecache does not contain any of that
program’s data yet, so misses are bound
to occur

ecan’t be avoided easily, so won’t focus
on these in this course

COMP3221 lec35-Cache-lIl.5 Saeid Nooshabadi

lypes or Cache Misses (#2/2)
1

2
3

Conflict Misses

migs that occurs because two
stinct memory addresses map t
e same cache location

*two blocks (which happen to map
to the same location) can keep
overwriting each other

*big problem in direct-mapped
caches

*how do we lessen the effect of
COMP3221 lec35-Cache-lIl.6 th eS ef) Saeid Nooshabadi

TMUOWE>O©O~NOUIAWNERO

Dealing with Conflict Misses

°Solution 1: Make the cache size bigger

o fails at some point

°Solution 2: Multiple distinct blocks can fit
in the same Cache Index?

0

[5
of

1
1

O >OOO~NOUTRWNEF

Fully Associative Cache (#1/4)

°Memory address fields:
*Tag: same as before
» Offset: same as before
*Index: non-existent

°What does this mean?

*no “rows”: any block can go anywhere in
the cache

*must compare with all tags in entire cache
to see if data is there

FUlly ASSOClative Lacnhe (#4/4)

°Fully Associative Cache (e.g., 32 B block)
ecompare tags in parallel

31 4 0
| CacheTag (27 bitslong) |Byte Offset|
CacheTag Valid CacheData
> O+ :ﬂl ~[B1B O
—> (De— D U
——> (O
»@4

COMP3221 lec35-Cache-IIl.9 Saeid Nooshabadi

rully Assvutliallve vdlllc (wo/4)

| address X |
Vi - —
tag CAM data RAM

hit dat
CAM (Content Addressable memory):a,g\ RAM Cell with
in-built comparator

COMP3221 lec35-Cache-II1.10 Saeid Nooshabadi

Fully Associative Cache (#4/4)

°Benefit of Fully Assoc Cache

*no Conflict Misses (since data can go
anywhere)

°Drawbacks of Fully Assoc Cache

*need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

Third Type of Cache Miss

°Capacity Misses

emiss that occurs because the cache has
alimited size

*miss that would not occur if we increase
the size of the cache

» sketchy definition, so just get the general
idea

°This is the primary type of miss for
Fully Associate caches.

N-VWay oel ASSOocClallve Lacne (#1/9)

°Memory address fields:
*Tag: same as before
» Offset: same as before
Index: points us to the correct “row”
(called a set in this case)
°So what’s the difference?
e each set contains multiple blocks

eonce we've found correct set, must
compare with all tags in that set to find
our data

COMP3221 lec35-Cache-lI1.13 Saeid Nooshabadi

°2-Way Set Associative —aggess——
Cache = |
Organisation

(o]

TMUOWPBOO~NOOIDWNRFLO

IN=VVdy oCL AsosUllallve Ldalllt \w4/9)

-

' |tag RAN ! data,RAM!

=1

“/

data RAM!

N-Way Set Associative Cache (#3/5)

°Summary:

ecache is direct-mapped with respect to
sets

eeach set is fully associative

e basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

N-Way Set Associative Cache (#4/5)

°Given memory address:
e Find correct set using Index value.

« Compare Tag with all Tag values in the
determined set.

e |f a match occurs, it's a hit, otherwise a
miss.

 Finally, use the offset field as usual to
find the desired data within the desired
block.

N-VWay Sel ASSOocClallve Lache (#9/9)

°What’s so great about this?

eeven a 2-way set assoc cache avoids a
lot of conflict misses

e hardware cost isn’t that bad: only need N
comparators

°In fact, for a cache with M blocks,
*it’s Direct-Mapped if it's 1-way set assoc
it’s Fully Assoc if it's M-way set assoc

*so these two are just special cases of the
more general set associative design

COMP3221 lec35-Cache-lI1.17 Saeid Nooshabadi

Laclllc Ulyallioatlull LulllpPal lsull

relative

performance

16

4

associative

direct-mapped

cache size (Kbytes) 1/4

COMP3221 lec35-Cache-lll.18

Saeid Nooshabadi

Degree of Associativity on 4KB Cache

performance

bandwidth
associativity (ways) 128 256

ARMS3 Cache Organisation

31

6543210
virtual address
\ /
J \% byte
user/supervisor addresses
decode [1:0]
\ [enable »|32)| dataRAM
v . v i N
tag CAM tag CAM tag CAM tag CAM
64 entry 64 entry 64 entry 64 entry 1024 x 32-bit word

\

; - »[9:4]

|

data

~eading iviaterial

° Steve Furber: ARM System On-Chip; 2nd
Ed, Addison-Wesley, 2000, ISBN: 0-201-
67519-6. Chapter 10.

COMP3221 lec35-Cache-lIl.21 Saeid Nooshabadi

bIOCK Replacement FOIICY (#1/Z2)

°Direct-Mapped Cache: index completely
specifies which position a block can go
in on amiss

°N-We_1%/_ Set Assoc (N > 1?(: index
specifies a set, but block can occupy
any position within the set on a miss

°Fully Associative: block can be written
into any position

°Question: if we have the choice, where
should we write an incoming block?

COMP3221 lec35-Cache-lI1.22 Saeid Nooshabadi

Block Replacement Policy (#2/2)

°Solution:

o If there are any locations with valid bit off
(empty), then usually write the new block
into the first one.

o If all possible locations already have a
valid block, we must pick a replacement
policy: rule by which we determine which
block gets “cached out” on a miss.

Block Replacement Policy: LRU

°LRU (Least Recently Used)

ldea: cache out block which has been
accessed (read or write) least recently

*Pro: temporal locality => recent past use
implies likely future use: in fact, this is a
very effective policy

* Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and much time to keep track of this

DIOCK Replacement EXxample

BIOCK keplacement EXample: LRU loc0 loc 1

°We have a 2-way set associative cache "Addresses 0, 2,0, 1, 4,0, ... | 9 0
with a four word total capacity and one * 0: miss, bring into set 0 (loc 0) set1
word blocks. We perform the _ o seto "
following word accesses (ignore bytes * 2: miss, bring into set 0 (loc 1) o,
for this problem):

.0 hit setQ] QO
Ol 2’ 01 11 41 O’ 21 3’ 514 T set 1
i i . . . set 0|
\I/*vmfvt &?Q%gof}lttﬁ grﬂ% Bog}/or&?ny misses + 1: miss, bring into set 1 (loc 0) - 2
replacement policy? L
« 4: miss, bring into set 0 (loc 1, replace 2)°¢'°_0
setl] 1
) setQ O
Saeid Nooshabadi . 0: m Sezae]i-'mm]éﬂ
Ways to Reduce Miss Rate Big Idea

°Larger cache
limited by cost and technology
* hit time of first level cache < cycle time
°More places in the cache to put each
block of memory - associativity

o fully-associative
- any block any line

* k-way set associated
- k places for each block
- direct map: k=1

°How chose between options of
associativity, block size, replacement
policy?
°Design against a performance model
e Minimize: Average Access Time

= Hit Time x Hit Rate + Miss Penalty x Miss

Rate

*influenced by technology and program
behavior

°Create the illusion of a memory that is
large, cheap, and fast - on average

CAaAlllpic

°Assume
e Hit Time = 1 cycle
* Miss rate = 5%
* Miss penalty = 20 cycles

°Avg mem access time =1 + 0.05 x 20
=2cycle

COMP3221 lec35-Cache-I11.29 Saeid Nooshabadi

HITPTOVITTY Viloos IFellalty

°When caches first became popular,
Miss Penalty ~ 10 processor clock
cycles

°Today 1000 MHz Processor (1 ns per
clock cycle) and 100 ns to go to DRAM
= 100 processor clock cycles!

Proc 1

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

COMP3221 lec35-Cache-I11.30 Saeid Nooshabadi

Analyzing Multi-level Cache Hierarchy

—] o
Proc s] 3, g
~ =
L1 hit | L2 hit
time time { |2 Miss Rate
L2 Miss Penally

L1 Miss Rate

.L1 Miss Penalty
\vg Mem Access Time =

L1 Hit Time + L1 Miss Rate * L1 Miss Penalty
1 Miss Penalty = L2 Hit Time + L2 Miss Rate

\vg Mem Access Time = * L2 Miss Penalty
L1 Hit Time + L1 Miss Rate * (L2 Hit Time +

L2 Miss Rate * L2 Miss Penaltv)

Typical Scale

°L1:
*size: tens of KB
* hit time: complete in one clock cycle
*miss rates: 1-5%
°L2:
*size: hundreds of KB
* hit time: few clock cycles
*miss rates: 10-20%
°L2 miss rate is fraction of L1 misses
that also missin L2

*why so high?

AAlliple

°Assume
L1 Hit Time =1 cycle
*L1 Miss rate = 5%
L2 Hit Time =5 cycles
*L2 Miss rate = 15% (% L1 misses that miss)
* L2 Miss Penalty = 100 cycles

°L1 miss penalty =5+ 0.15* 100 = 20

°Avg mem access time =1 + 0.05 x 20
=2 cycle

COMP3221 lec35-Cache-I11.33 Saeid Nooshabadi

Aadllipie. Vvitlivut L vLaclllc

°Assume
L1 Hit Time =1 cycle
*L1 Miss rate = 5%
*L1 Miss Penalty = 100 cycles

°Avg mem access time =1 + 0.05 x 100
=6 cycles

°3x faster with L2 cache

COMP3221 lec35-Cache-I11.34 Saeid Nooshabadi

What to Do on a Write Hit?

°Write-through

*update the word in cache block and
corresponding word in memory

°Write-back
eupdate word in cache block
«allow memory word to be “stale”
=> add ‘dirty’ bit to each line indicating

that memory needs to be updated when
block is replaced

=> OS flushes cache before I/O !l SO that
cache values become same as memory
values changed by I/O

Performance trade-offs?

Things to Remember (#1/2)

°Caches are NOT mandatory:
* Processor performs arithmetic
* Memory stores data
» Caches simply make data transfers go
faster

°Each level of memory hierarchy is just
a subset of next higher level

°Caches speed up due to temporal
locality: store data used recently

°Block size > 1 word speeds up due to

spatial locality: store words adjacent
tn the onec 1iced recentlyv

1NINgsS 10 RememDbper (#2/2)

°Cache design choices:
*size of cache: speed vs. capacity
s direct-mapped vs. associative
«for N-way set assoc: choice of N
*block replacement policy
*2nd level cache?
* Write through vs. write back?
°Use performance model to pick

between choices, depending on
programs, technology, budget, ...

COMP3221 lec35-Cache-I11.37 Saeid Nooshabadi

