
COMP3221  lec36-vm-I.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems 

Lectures 36: Virtual Memory - I

http://www.cse.unsw.edu.au/~cs3221
October, 2003

Saeid Nooshabadi

saeid@unsw.edu.au
Some of the slides are adopted from David Patterson (UCB) 

COMP3221  lec36-vm-I.2 Saeid Nooshabadi

Overview

°Virtual Memory

°Page Table

COMP3221  lec36-vm-I.3 Saeid Nooshabadi

Cache Review (#1/2)

°Caches are NOT mandatory:
• Processor performs arithmetic

• Memory stores instructions & data

• Caches simply make things go faster

°Each level of memory hierarchy is just 
a subset of next higher level

°Caches speed up due to Temporal 
Locality: store data used recently

°Block size > 1 word speeds up due to 
Spatial Locality: store words adjacent 
to the ones used recently 

COMP3221  lec36-vm-I.4 Saeid Nooshabadi

Cache Review (#2/2)

°Cache design choices:
• size of cache: speed vs. capacity

• direct-mapped vs. associative

• for N-way set assoc: choice of N

• block replacement policy

• 2nd level cache?

• Write through vs. write back?

°Use performance model to pick 
between choices, depending on 
programs, technology, budget, ...



COMP3221  lec36-vm-I.5 Saeid Nooshabadi

Another View of the Memory Hierarchy

Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far

{Next:
Virtual
Memory

COMP3221  lec36-vm-I.6 Saeid Nooshabadi

Virtual Memory

° If Principle of Locality allows caches 
to offer (usually) speed of cache 
memory with size of DRAM memory,
then why not, recursively, use at next 
level to give speed of DRAM memory,  
size of Disk memory?

°Called “Virtual Memory”
• Also allows OS to share memory, protect 
programs from each other

• Today, more important for protection vs. 
just another level of memory hierarchy

• Historically, it predates caches

COMP3221  lec36-vm-I.7 Saeid Nooshabadi

Problems Leading to Virtual Memory (#1/2)
°Programs address space is 
larger than the physical 
memory. 

• Need to swap code and data 
back and forth between 
memory and Hard disk using 
Virtual Memory)

0

Physical Memory

∞

Code

Static

Heap

Stack

64 MB

0

>>64 MB

COMP3221  lec36-vm-I.8 Saeid Nooshabadi

Problems Leading to Virtual Memory (#2/2)

°Many Processes (programs) active 
at the same time. (Single Processor 
- many Processes)

• Processor appears to run multiple 
programs all at once by rapidly 
switching between active programs.

• The rapid switching is managed by 
Memory Management Unit (MMU) by 
using Virtual Memory concept.

∞

Code

Static

Heap

Stack

0

∞

Code

Static

Heap

Stack

0

∞

Code

Static

Heap

Stack

0

•Each program sees the entire 
address space as its own. 
•How to avoid multiple programs 
overwriting each other.



COMP3221  lec36-vm-I.9 Saeid Nooshabadi

Segmentation Solution

°Segmentation provides simple MMU
• Program views its memory as set of 
segments. Code segment, Data Segment, 
Stack segment, etc.

• Each program has its own set of private 
segments. 

• Each access to memory is via a segment 
selector and offset within the segment.

• It allows a program to have its own 
private view of memory and to coexist 
transparently with other programs in the 
same memory space.

COMP3221  lec36-vm-I.10 Saeid Nooshabadi

Segmentation Memory Management Unit

° Base: The base address of the segment
° Logical address: an offset within a segment
° Bound: Segment limit

° SDT: Holds Access and other information about the segment

Segment Descriptor Table (SDT)        

logical addresssegment selector

physical address

+ >?

access fault

base bound

Virtual Address 
to memory

Look up 
table held by 
OS in mem

COMP3221  lec36-vm-I.11 Saeid Nooshabadi

Virtual to Physical Addr. Translation

°Each program operates in its own virtual 
address space; 

°Each is protected from the other
°OS can decide where each goes in memory
°Hardware (HW) provides virtual -> physical 
mapping

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(incl. caches)

COMP3221  lec36-vm-I.12 Saeid Nooshabadi

Simple Example: Base and Bound Reg

0

∞

OS

User A

User B

User C

$base

$base+
$bound

°Want discontinuous 
mapping

°Process size >> mem

°Addition not enough!

Enough space for User D,
but discontinuous 
(“fragmentation problem”) 



COMP3221  lec36-vm-I.13 Saeid Nooshabadi

Mapping Virtual Memory to Physical Memory 

0

Physical Memory

∞
Virtual Memory

Code

Static

Heap

Stack

64 MB

°Divide into equal sized
chunks (about 4KB)

0

°Any chunk of Virtual Memory 
assigned to any chuck of 
Physical Memory (“page”)

COMP3221  lec36-vm-I.14 Saeid Nooshabadi

Paging Organization (assume 1 KB pages)

Addr
Trans
MAP

Page is unit 
of mapping

Page also unit of 
transfer from disk 
to physical memory

page   0 1K
1K

1K

0
1024

31744
Virtual 
Memory

Virtual
Address

page   1

page 31

1K2048 page   2
...... ...

page 00
1024

7168

Physical
Address

Physical
Memory

1K
1K

1K

page 1

page 7
...... ...

Addr Trans MAP is 
organised by OS

COMP3221  lec36-vm-I.15 Saeid Nooshabadi

Virtual Memory Mapping Function

°Cannot have simple function to 
predict arbitrary mapping

°Use table lookup of mappings

°Use table lookup (“Page Table”) for 
mappings: Page number is index

°Virtual Memory Mapping Function
• Physical Offset = Virtual Offset

• Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

Page Number   Offset

COMP3221  lec36-vm-I.16 Saeid Nooshabadi

Address Mapping: Page Table

Virtual Address:
page no. offset

Page Table
Base Reg

Page Table  located in physical memory

(actually, 
concatenation)

index
into
page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Number

.

V A.R. P. P. A.

...

...

Reg #2 in CP 
#15 in ARM



COMP3221  lec36-vm-I.17 Saeid Nooshabadi

Page Table

°A page table is an operating system 
structure which contains the mapping 
of virtual addresses to physical 
locations

• There are several different ways, all up to 
the operating system, to keep this data 
around

°Each process running in the operating 
system has its own page table

• “State” of process is PC, all registers, 
plus page table

• OS changes page tables by changing 
contents of Page Table Base Register

COMP3221  lec36-vm-I.18 Saeid Nooshabadi

Reading Material
° Steve Furber: ARM System On-Chip; 2nd 

Ed, Addison-Wesley, 2000, ISBN: 0-201-
67519-6. Chapter 10.

COMP3221  lec36-vm-I.19 Saeid Nooshabadi

Smart Mobile Phones
° The Nokia’s Series 60 

Platform:
• software product for 

smart phones that Nokia 
licenses to other mobile-
handset manufacturers. 

• runs on top of the 
Symbian OS. 

• The Series 60 Platform 
includes mobile

- browsing, 
- multimedia 

messaging and 
content downloading, 

- personal information 
management and 
telephony 
applications. 

- software platform 
includes a complete 
and modifiable user 
interface library. 

•ARM PrimeXsys tools 
supplies the suite of pre-
validated hardware abd
software

- Licensees: Panasonic Mobile 
Communications, Samsung, Sendo, 
and Siemens (60%  of market

COMP3221  lec36-vm-I.20 Saeid Nooshabadi

Paging/Virtual Memory for Multiple Pocesses
User B: 

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A 
Page
Table

B 
Page
Table

User A: 
Virtual Memory
∞

0
0

Physical
Memory

64 MB



COMP3221  lec36-vm-I.21 Saeid Nooshabadi

Page Table Entry (PTE) Format

°Contains either Physical Page Number 
or indication not in Main Memory

°OS maps to disk if Not Valid  (V = 0)

° If valid, also check if have permission 
to use page: Access Rights (A.R.) may 
be Read Only, Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

COMP3221  lec36-vm-I.22 Saeid Nooshabadi

Things to Remember
° Apply Principle of Locality Recursively

° Manage memory to disk? Treat as cache
• Included protection as bonus, now critical

• Use Page Table of mappings vs. tag/data in cache

° Virtual Memory allows protected sharing of 
memory between processes with less 
swapping to disk, less fragmentation than 
always swap or base/bound

° Virtual Memory allows protected sharing of 
memory between processes with less 
swapping to disk, less fragmentation than 
always swap or base/bound in Segmentation


