Overview

COMP 3221 ° Translation Lookaside Buffer (TLB) Microprocessors and Embedded Systems ° Two level page Table Lectures 38: Virtual Memory - III * Two level page Table http://www.cse.unsw.edu.au/~cs3221 October, 2003 Saeid Nooshabadi saeid@unsw.edu.au

Three Advantages of Virtual Memory (#1/2)

1) Translation:

- Program can be given consistent view of memory, even though physical memory is scrambled
- Makes multiple processes reasonable
- Only the most important part of program ("<u>Working Set</u>") must be in physical memory
- Contiguous structures (like stacks) use only as much physical memory as necessary yet still grow later

Three Advantages of Virtual Memory (#2/2)

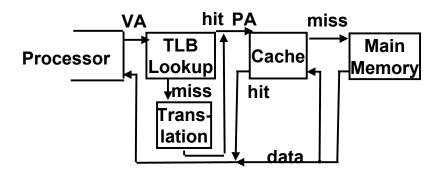
2) Protection:

- Different processes protected from each other
- Different pages can be given special behavior
 - (Read Only, Invisible to user programs, etc).
- Privileged data protected from User programs
- Very important for protection from malicious programs ⇒ Far more "viruses" under Microsoft Windows

3) Sharing:

• Can map same physical page to multiple users ("Shared memory")

Saeid Nooshabadi


Why Translation Lookaside		Virtual Physic	<mark>Typical TLI</mark> al Dirty Re		Access
[°] Every paged virtual memor must be checked against Entry of Page Table in me provide VA → PA translati protection	mory to ion and	Address Addre	SS		Rights
[°] Cache of Page Table Entries makes address translation possible without memory access in common case to make it fast		 TLB just a cache on the page table mappings TLB access time comparable to cache (much less than main memory access time) <u>Ref</u>: Used to help calculate LRU on replacement <u>Dirty</u>: since use write back, need to know whether or not to write page to disk when replaced 			
COMP3221 lec38-vm-III.5	Saeid Nooshabadi	COMP3221 lec38-vm-III.6			Saeid Nooshabadi
What if Not in TL	B?		TLB Miss		
 Option 1: Hardware checks page table and loads new Page Table Entry into TLB Option 2: Hardware traps to OS, up to 		[°] If the address is not in the TLB, ARM's Translation Table Walk Hardware is invoked to retrieve the relevant entry from translation table held in main			
 Option 2: Hardware traps OS to decide what to do ARM follows Option 1: Ha the loading of new Page T 		memory. ° There are two possibilities			
		vali 1	d virtual phy 2	ysical 9	
COMP3221 lec38-vm-III.7	Saeid Nooshabadi	COMP3221 lec38-vm-lll.8			Saeid Nooshabadi

TLB Miss (If the Data is in Memory) TLB Miss (if the Data is on Disk) [°]A Page Fault (Abort exception) is ^o Translation Table Walk Hardware simply issued to the processor adds the entry to the TLB, evicting an old entry from the TLB if no empty slot [°]The OS loads the page off the disk into a free block of memory, using a DMA °Fetch Translation once on TLB transfer Meantime OS switches to some other valid virtual physical process waiting to be run 32 2 9 [°]When the DMA is complete, Processor gets an interrupt and OS update the process's page table and TLB · So when OS switches back to the task, the desired data will be in memory Saeid Nooshabadi Saeid Nooshabadi COMP3221 lec38-vm-III.9 COMP3221 lec38-vm-III.10 What if We Don't Have Enough Memory? **Translation Look-Aside Buffers**

- °OS chooses some other page belonging to a program and transfer it onto the disk if it is dirty
 - If clean (other copy is up-to-date), just overwrite that data in memory
 - OS chooses the page to evict based on replacement policy (e.g., LRU)
- [°]And update that program's page table to reflect the fact that its memory moved somewhere else on disk

•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be fully associative, set associative, or direct mapped

Virtual Memory Review Summary

- °Let's say we're fetching some data:
 - Check TLB (input: VPN, output: PPN)
 - hit: fetch translation
 - miss: check pagetable (in memory)
 - > pagetable hit: fetch translation
 - pagetable miss: page fault, fetch page from disk to memory, return translation to TLB

Saeid Nooshabadi

- Check cache (input: PPN, output: data)
 - hit: return value

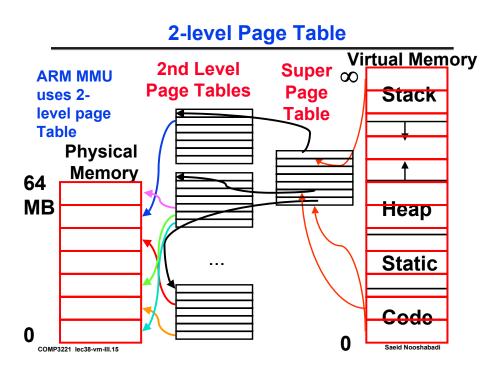
COMP3221 lec38-vm-III.13

- miss: fetch value from memory

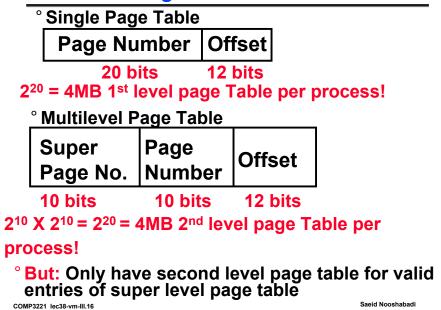
Virtual Memory Problem #3

° Page Table too big!

- 4GB Virtual Memory ÷ 4 KB page
 - \Rightarrow ~ 1 million Page Table Entries
 - \Rightarrow 4 MB just for Page Table for 1 process,
 - 25 processes \Rightarrow 100 MB for Page Tables!


[°]Variety of solutions to trade off memory size of mapping function for slower when miss TLB

 Make TLB large enough, highly associative so rarely miss on address translation


Saeid Nooshabadi

• COMP3231: Operating Systems, will go over more options and in greater depth

COMP3221 lec38-vm-III.14

Page Table Shrink:

Space Savings for Multi-Level Page Table

° If only 10% of entries of Super Page Table have valid entries, then total mapping size is roughly 1/10-th of single level page table

Reading Material

[°] Steve Furber: ARM System On-Chip; 2nd Ed, Addison-Wesley, 2000, ISBN: 0-201-67519-6. Chapter 10.

COMP3221	lec38-vm-III.17

Saeid Nooshabadi

COMP3221 lec38-vm-III.18

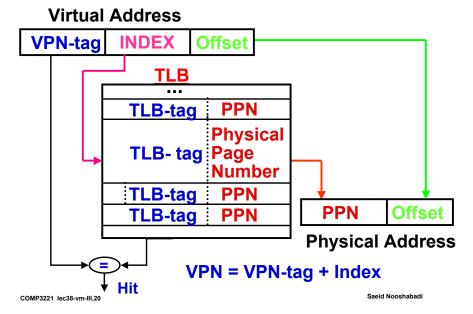
Saeid Nooshabadi

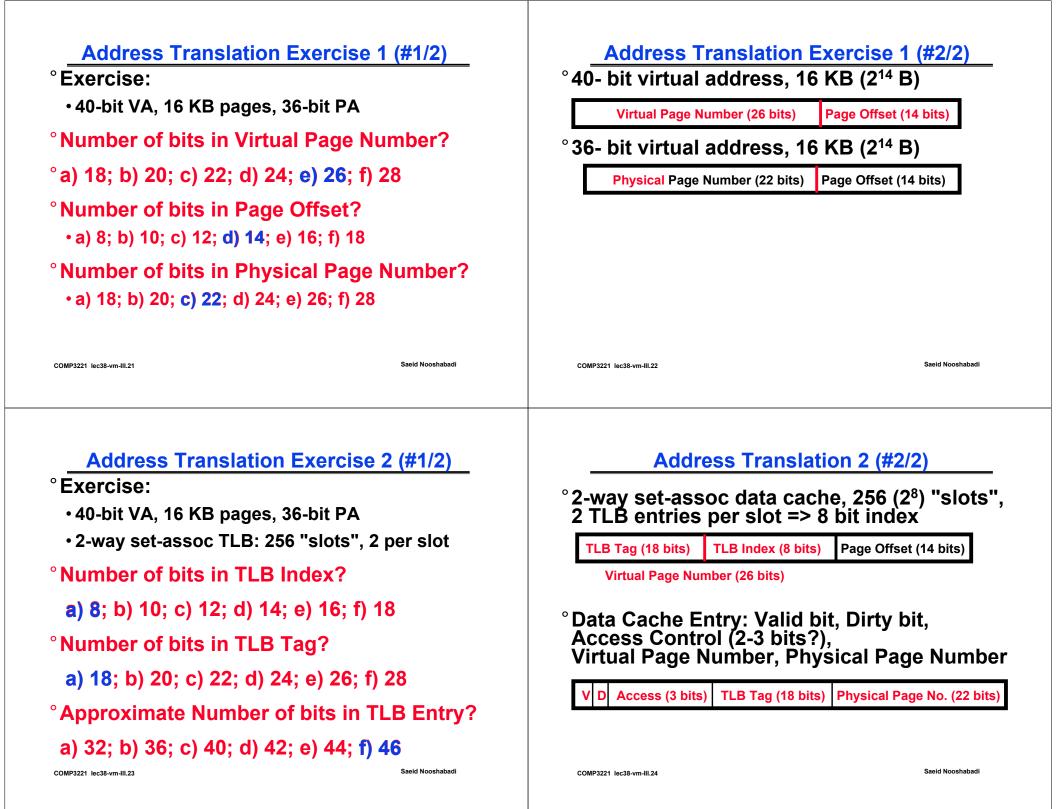
Sendo X Smart Phone

On the 21st October Sendo announced its new highly featured multimedia smartphone, the Sendo X.

The Sendo X sets itself apart from other multimedia smartphones with a number of innovations, specifically in the area of video, audio, camera, connectivity and internet functionality.

Video: The Sendo X features a 176x220 TFT display with up to 65,536 colours. It has a built-in camcorder function with more than half an hour of recording of quality video and audio




Camera: The VGA still/video camera is highly specified. It offers 4 x digital zoom and an integrated flash with automatic red-eye reduction

- Audio: The Sendo X has been designed to offer best in class performance, with a 64 voice polyphonic capability
- The Sendo X is the first Sendo smartphone based on Symbian OS and the Series 60 user interface.

What are the trade off in designing such a system? COMP3221 lec38-vm-III.19 Saeid Nooshabadi

Address Translation & 3 Exercises

Address Translation Exercise 3 (#1/2)

° Exercise:

- 40-bit VA, 16 KB pages, 36-bit PA
- 2-way set-assoc TLB: 256 "slots", 2 per slot
- 64 KB data cache, 64 Byte blocks, 2 way S.A.

Number of bits in Cache Offset? a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

- [°]Number of bits in Cache Index? a) 6; b) 9; c) 10; d) 12; e) 14; f) 16
- [°]Number of bits in Cache Tag? a) 18; b) 20; c) 21; d) 24; e) 26; f) 28
- ^o Approximate No. of bits in Cache Entry? COMP3221 lec38-vm-III.25 Saeid Wooshabadi

Things to Remember

[°] Spatial Locality means Working Set of Pages is all that must be in memory for process to run fairly well

°TLB to reduce performance cost of VM

°Need more compact representation to reduce memory size cost of simple 1-level page table (especially $32 \Rightarrow 64$ -bit address)

Address Translation 3 (#2/2)

°2-way set-assoc data cache, 64K/64 =1K (2¹⁰) blocks, 2 entries per slot => 512 slots => 10 bit index

Cache Tag (21 bits) Cache Index (9 bits) Block Offset (6 bits)

Physical Page Address (36 bits)

[°]Data Cache Entry: Valid bit, Dirty bit, Cache tag + 64 Bytes of Data

V D Cache Tag (21 bits)

Cache Data (64 Bytes)

COMP3221 lec38-vm-III.26

Saeid Nooshabadi