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Review (#1/3)
°Apply Principle of Locality Recursively
°Reduce Miss Penalty? add a (L2) cache
°Manage memory to disk? Treat as cache

• Included protection as bonus, now critical
• Use Page Table of mappings 
vs. tag/data in cache

°Virtual memory to Physical Memory 
Translation too slow? 

• Add a cache of Virtual to Physical Address 
Translations, called a TLB
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Review (#2/3)
°Virtual Memory allows protected sharing of 
memory between processes with less 
swapping to disk, less fragmentation than 
always swap or base/bound via 
segmentation

°Spatial Locality means Working Set of 
Pages is all that must be in memory for 
process to run fairly well

°TLB to reduce performance cost of VM
°Need more compact representation to 
reduce memory size cost of simple 1-level 
page table (especially 32 − 64-bit addresses) 
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Why Caches?
µProc
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° 1989 first Intel CPU with cache on chip;

° 1999 gap “Tax”; 37%  area of Alpha 21164, 
61% StrongArm SA110, 64% Pentium Pro
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Memory Hierarchy Pyramid

Levels in 
memory  

hierarchy

Central Processor Unit (CPU)

Size of memory at each level
Principle of Locality (in time, in space) + 

Hierarchy of Memories of different speed, 
cost; exploit to improve cost-performance

Level 1
Level 2

Level n

Increasing 
Distance 

from CPU,
Decreasing  
cost / MB

“Upper”

“Lower”
Level 3

. . .
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Why virtual memory? (#1/2)
° Protection

• regions of the address space can be read 
only, execute only, . . .

° Flexibility
• portions of a program can be placed 
anywhere, without relocation (changing 
addresses)

° Expandability
• can leave room in virtual address space for 
objects to grow

° Storage management
• allocation/deallocation of variable sized 
blocks is costly and leads to (external) 
fragmentation; paging solves this
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Why virtual memory? (#2/2)
° Generality

• ability to run programs larger than size of 
physical memory

° Storage efficiency
• retain only most important portions of the 
program in memory

° Concurrent I/O
• execute other processes while 
loading/dumping page
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Virtual Memory Review (#1/4)

°User program view of memory:
• Contiguous
• Start from some set address
• Infinitely large
• Is the only running program

°Reality:
• Non-contiguous
• Start wherever available memory is
• Finite size
• Many programs running at a time
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Virtual Memory Review (#2/4)

°Virtual memory provides:
• illusion of contiguous memory
• all programs starting at same set 
address

• illusion of infinite memory
• protection
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Virtual Memory Review (#3/4)

° Implementation:
• Divide memory into “chunks” (pages)
• Operating system controls pagetable that 
maps virtual addresses into physical 
addresses

• Think of memory as a cache for disk
• TLB is a cache for the pagetable
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Why Translation Lookaside Buffer (TLB)?

°Paging is most popular 
implementation of virtual memory
(vs. base/bounds in segmentation)

°Every paged virtual memory access 
must be checked against 
Entry of Page Table in memory to 
provide protection

°Cache of Page Table Entries makes 
address translation possible without 
memory access (in common case) to 
make translation fast
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Virtual Memory Review (#4/4)

°Let’s say we’re fetching some data:
• Check TLB (input: VPN, output: PPN)

- hit: fetch translation
- miss: check pagetable (in memory)

pagetable hit: fetch translation
pagetable miss: page fault, fetch page 
from disk to memory, return 
translation to TLB

• Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory
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Paging/Virtual Memory Review
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Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of 
memory, even though physical memory is 
scrambled

• Makes multiple processes reasonable 
• Only the most important part of program 
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only 
as much physical memory as necessary yet 
still grow later
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Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

- (Read Only, Invisible to user programs, etc).
• Privileged data protected from User programs
• Very important for protection from malicious 
programs ⇒ Far more “viruses” under 
Microsoft Windows

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)
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4 Questions for Memory Hierarchy

° Q1: Where can a block be placed in the upper 
level? (Block placement)

° Q2: How is a block found if it is in the upper 
level?
(Block identification)

° Q3: Which block should be replaced on a 
miss? 
(Block replacement)

° Q4: What happens on a write? 
(Write strategy)
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°Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set 
associative

• S.A. Mapping = Block Number Mod Number of Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?
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°Direct indexing (using index and block 
offset), and tag comparing

° Increasing associativity shrinks index, 
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select
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°Easy for Direct Mapped
°Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:

2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?
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°Write through—The information is written 
to both the block in the cache and to the 
block in the lower-level memory.

°Write back—The information is written 
only to the block in the cache. The 
modified cache block is written to main 
memory only when it is replaced.

• is block clean or dirty?

°Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

Q4: What happens on a write?
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3D - Graphics For Mobile Phones
° Developed in collaboration with 

Imagination Technologies, MBX 
2D and 3D accelerator cores 
deliver PC and console-quality 
3D graphics on embedded ARM-
based devices. 

° Supporting the feature-set and 
performance-level of commodity 
PC hardware, MBX cores use a 
unique screen-tiling technology 
to reduce the memory bandwidth 
and power consumption to levels 
suited to mobile devices, 
providing excellent price-
performance for embedded SoC
devices. 

° 660K gates (870K with optional VGP 
geometry processor)

° 80MHz operation in 0.18µm process
° Over 120MHz operation in 0.13µm 

process
° Up to 500 mega pixel/sec effective fill 

rate http://news.zdnet.co.uk/0,39020330,39117384,00.htm

°Up to 2.5 million triangle/sec rendering 
rate
°Suited to QVGA (320x240) up to VGA 
(640x480) resolution screens
°<1mW/MHz in 0.13µm process and <2mW 
in 0.18 µm process
°Optional VGP floating point geometry 
engine compatible with Microsoft
VertexShader specification
°2D and 3D graphics acceleration and 
video acceleration
°Screen tiling and deferred texturing - only 
visible pixels are rendered
°Internal Z-buffer tile within the MBX core
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Address Translation & 3 Exercises

PPN Offset
Physical Address

VPN-tag  Offset
Virtual Address

INDEX

TLB

Physical
Page
Number
PPN
PPN

PPN
...

TLB-tag

TLB- tag     

TLB-tag
TLB-tag

Hit
= VPN = VPN-tag + Index
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Address Translation Exercise 1 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA

°Number of bits in Virtual Page Number?
°a) 18; b) 20; c) 22; d) 24; e) 26; f) 28
°Number of bits in Page Offset?

• a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Number of bits in Physical Page Number?
• a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

e) 26

d) 14

c) 22

COMP3221  lec39-cache-vm-review.24 Saeid Nooshabadi

Address Translation Exercise 1 (#2/2)
°40- bit virtual address, 16 KB (214 B)

°36- bit virtual address, 16 KB (214 B)

Page Offset (14 bits)Virtual Page Number (26 bits)

Page Offset (14 bits)Physical Page Number (22 bits)
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Address Translation Exercise 2 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot

°Number of bits in TLB Index? 
a) 8; b) 10; c) 12; d) 14; e) 16; f) 18 

°Number of bits in TLB Tag?
a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Approximate Number of bits in TLB Entry?
a) 32; b) 36; c) 40; d) 42; e) 44; f) 46

a) 8

a) 18

f) 46
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Address Translation 2 (#2/2)

°2-way set-assoc data cache, 256 (28) "slots", 
2 TLB entries per slot => 8 bit index

°Data Cache Entry: Valid bit, Dirty bit, 
Access Control (2-3 bits?), 
Virtual Page Number, Physical Page Number

Page Offset (14 bits)

Virtual Page Number (26 bits)

TLB Index (8 bits)TLB Tag (18 bits)

V D TLB Tag (18 bits)Access (3 bits) Physical Page No. (22 bits)
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Address Translation Exercise 3 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot
• 64 KB data cache, 64 Byte blocks, 2 way S.A.

°Number of bits in Cache Offset? 
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Index?
a) 6; b) 9; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Tag?
a) 18; b) 20; c) 21; d) 24; e) 26; f) 28

°Approximate No. of bits in Cache Entry?

a) 6

b) 9

c) 21
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Address Translation 3 (#2/2)
°2-way set-assoc data cache, 64K/64 =1K (210) 
blocks, 2 entries per slot => 512 slots => 10 
bit index

°Data Cache Entry: Valid bit, Dirty bit, Cache 
tag + 64 Bytes of Data

Block Offset (6 bits)

Physical Page Address (36 bits)

Cache Index (9 bits)Cache Tag (21 bits)

V D Cache Tag (21 bits) Cache Data (64 Bytes)
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Cache/VM/TLB Summary: (#1/3)
° The Principle of Locality:

• Program access a relatively small portion of the 
address space at any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

° Caches, TLBs, Virtual Memory all understood 
by examining how they deal with 4 questions: 
1) Where can block be placed? 
2) How is block found? 
3) What block is replaced on miss? 
4) How are writes handled?
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Cache/VM/TLB Summary: (#2/3)
°Virtual Memory allows protected sharing of 
memory between processes with less 
swapping to disk, less fragmentation than 
always swap or base/bound in segmentation

°3 Problems:
1) Not enough memory: Spatial Locality 
means small Working Set of pages OK

2) TLB to reduce performance cost of VM
3) Need more compact representation to 
reduce memory size cost of simple 1-level 
page table, especially for 64-bit address
(See COMP3231)
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Cache/VM/TLB Summary: (#3/3)
°Virtual memory was controversial at the 
time: can SW automatically manage 64KB 
across many programs?

• 1000X DRAM growth removed controversy

°Today VM allows many processes to 
share single memory without having to 
swap all processes to disk; 
VM protection today is more important 
than memory hierarchy

°Today CPU time is a function  of 
(ops, cache misses) vs. just f(ops):
What does this mean to Compilers, 
Data structures, Algorithms?


