
COMP3221 lec39-cache-vm-review.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lectures 39: Cache & Virtual Memory Review

http://www.cse.unsw.edu.au/~cs3221

November, 2003
Saeid Nooshabadi

saeid@unsw.edu.au
COMP3221 lec39-cache-vm-review.2 Saeid Nooshabadi

Review (#1/3)
°Apply Principle of Locality Recursively
°Reduce Miss Penalty? add a (L2) cache
°Manage memory to disk? Treat as cache

• Included protection as bonus, now critical
• Use Page Table of mappings
vs. tag/data in cache

°Virtual memory to Physical Memory
Translation too slow?

• Add a cache of Virtual to Physical Address
Translations, called a TLB

COMP3221 lec39-cache-vm-review.3 Saeid Nooshabadi

Review (#2/3)
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound via
segmentation

°Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

°TLB to reduce performance cost of VM
°Need more compact representation to
reduce memory size cost of simple 1-level
page table (especially 32 − 64-bit addresses)

COMP3221 lec39-cache-vm-review.4 Saeid Nooshabadi

Why Caches?
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”

° 1989 first Intel CPU with cache on chip;

° 1999 gap “Tax”; 37% area of Alpha 21164,
61% StrongArm SA110, 64% Pentium Pro

COMP3221 lec39-cache-vm-review.5 Saeid Nooshabadi

Memory Hierarchy Pyramid

Levels in
memory

hierarchy

Central Processor Unit (CPU)

Size of memory at each level
Principle of Locality (in time, in space) +

Hierarchy of Memories of different speed,
cost; exploit to improve cost-performance

Level 1
Level 2

Level n

Increasing
Distance

from CPU,
Decreasing
cost / MB

“Upper”

“Lower”
Level 3

. . .

COMP3221 lec39-cache-vm-review.6 Saeid Nooshabadi

Why virtual memory? (#1/2)
° Protection

• regions of the address space can be read
only, execute only, . . .

° Flexibility
• portions of a program can be placed
anywhere, without relocation (changing
addresses)

° Expandability
• can leave room in virtual address space for
objects to grow

° Storage management
• allocation/deallocation of variable sized
blocks is costly and leads to (external)
fragmentation; paging solves this

COMP3221 lec39-cache-vm-review.7 Saeid Nooshabadi

Why virtual memory? (#2/2)
° Generality

• ability to run programs larger than size of
physical memory

° Storage efficiency
• retain only most important portions of the
program in memory

° Concurrent I/O
• execute other processes while
loading/dumping page

COMP3221 lec39-cache-vm-review.8 Saeid Nooshabadi

Virtual Memory Review (#1/4)

°User program view of memory:
• Contiguous
• Start from some set address
• Infinitely large
• Is the only running program

°Reality:
• Non-contiguous
• Start wherever available memory is
• Finite size
• Many programs running at a time

COMP3221 lec39-cache-vm-review.9 Saeid Nooshabadi

Virtual Memory Review (#2/4)

°Virtual memory provides:
• illusion of contiguous memory
• all programs starting at same set
address

• illusion of infinite memory
• protection

COMP3221 lec39-cache-vm-review.10 Saeid Nooshabadi

Virtual Memory Review (#3/4)

° Implementation:
• Divide memory into “chunks” (pages)
• Operating system controls pagetable that
maps virtual addresses into physical
addresses

• Think of memory as a cache for disk
• TLB is a cache for the pagetable

COMP3221 lec39-cache-vm-review.11 Saeid Nooshabadi

Why Translation Lookaside Buffer (TLB)?

°Paging is most popular
implementation of virtual memory
(vs. base/bounds in segmentation)

°Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

°Cache of Page Table Entries makes
address translation possible without
memory access (in common case) to
make translation fast

COMP3221 lec39-cache-vm-review.12 Saeid Nooshabadi

Virtual Memory Review (#4/4)

°Let’s say we’re fetching some data:
• Check TLB (input: VPN, output: PPN)

- hit: fetch translation
- miss: check pagetable (in memory)

pagetable hit: fetch translation
pagetable miss: page fault, fetch page
from disk to memory, return
translation to TLB

• Check cache (input: PPN, output: data)
- hit: return value
- miss: fetch value from memory

COMP3221 lec39-cache-vm-review.13 Saeid Nooshabadi

Paging/Virtual Memory Review
User B:

Virtual Memory
∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory
∞

0
0

Physical
Memory

64 MB

TLB

COMP3221 lec39-cache-vm-review.14 Saeid Nooshabadi

Three Advantages of Virtual Memory
1) Translation:

• Program can be given consistent view of
memory, even though physical memory is
scrambled

• Makes multiple processes reasonable
• Only the most important part of program
(“Working Set”) must be in physical memory

• Contiguous structures (like stacks) use only
as much physical memory as necessary yet
still grow later

COMP3221 lec39-cache-vm-review.15 Saeid Nooshabadi

Three Advantages of Virtual Memory
2) Protection:

• Different processes protected from each other
• Different pages can be given special behavior

- (Read Only, Invisible to user programs, etc).
• Privileged data protected from User programs
• Very important for protection from malicious
programs ⇒ Far more “viruses” under
Microsoft Windows

3) Sharing:
• Can map same physical page to multiple users
(“Shared memory”)

COMP3221 lec39-cache-vm-review.16 Saeid Nooshabadi

4 Questions for Memory Hierarchy

° Q1: Where can a block be placed in the upper
level? (Block placement)

° Q2: How is a block found if it is in the upper
level?
(Block identification)

° Q3: Which block should be replaced on a
miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

COMP3221 lec39-cache-vm-review.17 Saeid Nooshabadi

°Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set
associative

• S.A. Mapping = Block Number Mod Number of Sets
0 1 2 3 4 5 6 7Block

no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where block placed in upper level?

COMP3221 lec39-cache-vm-review.18 Saeid Nooshabadi

°Direct indexing (using index and block
offset), and tag comparing

° Increasing associativity shrinks index,
expands tag

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

COMP3221 lec39-cache-vm-review.19 Saeid Nooshabadi

°Easy for Direct Mapped
°Set Associative or Fully Associative:

• Random
• LRU (Least Recently Used)

Miss Rates
Associativity:

2-way 4-way 8-way
Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block replaced on a miss?

COMP3221 lec39-cache-vm-review.20 Saeid Nooshabadi

°Write through—The information is written
to both the block in the cache and to the
block in the lower-level memory.

°Write back—The information is written
only to the block in the cache. The
modified cache block is written to main
memory only when it is replaced.

• is block clean or dirty?

°Pros and Cons of each?
• WT: read misses cannot result in writes
• WB: no writes of repeated writes

Q4: What happens on a write?

COMP3221 lec39-cache-vm-review.21 Saeid Nooshabadi

3D - Graphics For Mobile Phones
° Developed in collaboration with

Imagination Technologies, MBX
2D and 3D accelerator cores
deliver PC and console-quality
3D graphics on embedded ARM-
based devices.

° Supporting the feature-set and
performance-level of commodity
PC hardware, MBX cores use a
unique screen-tiling technology
to reduce the memory bandwidth
and power consumption to levels
suited to mobile devices,
providing excellent price-
performance for embedded SoC
devices.

° 660K gates (870K with optional VGP
geometry processor)

° 80MHz operation in 0.18µm process
° Over 120MHz operation in 0.13µm

process
° Up to 500 mega pixel/sec effective fill

rate http://news.zdnet.co.uk/0,39020330,39117384,00.htm

°Up to 2.5 million triangle/sec rendering
rate
°Suited to QVGA (320x240) up to VGA
(640x480) resolution screens
°<1mW/MHz in 0.13µm process and <2mW
in 0.18 µm process
°Optional VGP floating point geometry
engine compatible with Microsoft
VertexShader specification
°2D and 3D graphics acceleration and
video acceleration
°Screen tiling and deferred texturing - only
visible pixels are rendered
°Internal Z-buffer tile within the MBX core

COMP3221 lec39-cache-vm-review.22 Saeid Nooshabadi

Address Translation & 3 Exercises

PPN Offset
Physical Address

VPN-tag Offset
Virtual Address

INDEX

TLB

Physical
Page
Number
PPN
PPN

PPN
...

TLB-tag

TLB- tag

TLB-tag
TLB-tag

Hit
= VPN = VPN-tag + Index

COMP3221 lec39-cache-vm-review.23 Saeid Nooshabadi

Address Translation Exercise 1 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA

°Number of bits in Virtual Page Number?
°a) 18; b) 20; c) 22; d) 24; e) 26; f) 28
°Number of bits in Page Offset?

• a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Number of bits in Physical Page Number?
• a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

e) 26

d) 14

c) 22

COMP3221 lec39-cache-vm-review.24 Saeid Nooshabadi

Address Translation Exercise 1 (#2/2)
°40- bit virtual address, 16 KB (214 B)

°36- bit virtual address, 16 KB (214 B)

Page Offset (14 bits)Virtual Page Number (26 bits)

Page Offset (14 bits)Physical Page Number (22 bits)

COMP3221 lec39-cache-vm-review.25 Saeid Nooshabadi

Address Translation Exercise 2 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot

°Number of bits in TLB Index?
a) 8; b) 10; c) 12; d) 14; e) 16; f) 18

°Number of bits in TLB Tag?
a) 18; b) 20; c) 22; d) 24; e) 26; f) 28

°Approximate Number of bits in TLB Entry?
a) 32; b) 36; c) 40; d) 42; e) 44; f) 46

a) 8

a) 18

f) 46
COMP3221 lec39-cache-vm-review.26 Saeid Nooshabadi

Address Translation 2 (#2/2)

°2-way set-assoc data cache, 256 (28) "slots",
2 TLB entries per slot => 8 bit index

°Data Cache Entry: Valid bit, Dirty bit,
Access Control (2-3 bits?),
Virtual Page Number, Physical Page Number

Page Offset (14 bits)

Virtual Page Number (26 bits)

TLB Index (8 bits)TLB Tag (18 bits)

V D TLB Tag (18 bits)Access (3 bits) Physical Page No. (22 bits)

COMP3221 lec39-cache-vm-review.27 Saeid Nooshabadi

Address Translation Exercise 3 (#1/2)
°Exercise:

• 40-bit VA, 16 KB pages, 36-bit PA
• 2-way set-assoc TLB: 256 "slots", 2 per slot
• 64 KB data cache, 64 Byte blocks, 2 way S.A.

°Number of bits in Cache Offset?
a) 6; b) 8; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Index?
a) 6; b) 9; c) 10; d) 12; e) 14; f) 16

°Number of bits in Cache Tag?
a) 18; b) 20; c) 21; d) 24; e) 26; f) 28

°Approximate No. of bits in Cache Entry?

a) 6

b) 9

c) 21

COMP3221 lec39-cache-vm-review.28 Saeid Nooshabadi

Address Translation 3 (#2/2)
°2-way set-assoc data cache, 64K/64 =1K (210)
blocks, 2 entries per slot => 512 slots => 10
bit index

°Data Cache Entry: Valid bit, Dirty bit, Cache
tag + 64 Bytes of Data

Block Offset (6 bits)

Physical Page Address (36 bits)

Cache Index (9 bits)Cache Tag (21 bits)

V D Cache Tag (21 bits) Cache Data (64 Bytes)

COMP3221 lec39-cache-vm-review.29 Saeid Nooshabadi

Cache/VM/TLB Summary: (#1/3)
° The Principle of Locality:

• Program access a relatively small portion of the
address space at any instant of time.

- Temporal Locality: Locality in Time
- Spatial Locality: Locality in Space

° Caches, TLBs, Virtual Memory all understood
by examining how they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

COMP3221 lec39-cache-vm-review.30 Saeid Nooshabadi

Cache/VM/TLB Summary: (#2/3)
°Virtual Memory allows protected sharing of
memory between processes with less
swapping to disk, less fragmentation than
always swap or base/bound in segmentation

°3 Problems:
1) Not enough memory: Spatial Locality
means small Working Set of pages OK

2) TLB to reduce performance cost of VM
3) Need more compact representation to
reduce memory size cost of simple 1-level
page table, especially for 64-bit address
(See COMP3231)

COMP3221 lec39-cache-vm-review.31 Saeid Nooshabadi

Cache/VM/TLB Summary: (#3/3)
°Virtual memory was controversial at the
time: can SW automatically manage 64KB
across many programs?

• 1000X DRAM growth removed controversy

°Today VM allows many processes to
share single memory without having to
swap all processes to disk;
VM protection today is more important
than memory hierarchy

°Today CPU time is a function of
(ops, cache misses) vs. just f(ops):
What does this mean to Compilers,
Data structures, Algorithms?

