
COMP3221 lec40-exception-review.1 Saeid Nooshabadi

COMP 3221

Microprocessors and Embedded Systems

Lecture 40: Review of Exception

http://www.cse.unsw.edu.au/~cs3221

November, 2003

Saeid Nooshabadi

Saeid@unsw.edu.au
COMP3221 lec40-exception-review.2 Saeid Nooshabadi

Outline

° Instruction Set Support for Exception

°Prioritized Exceptions

°Re-entrant Exception Routine

COMP3221 lec40-exception-review.3 Saeid Nooshabadi

Crossing the System Boundary

°System loads user program into
memory and ‘gives’ it use of the
processor

°Switch back
• SWI

- request service

- I/O

• TRAP (page Fault)

• Interrupt

Proc Mem

I/O Bus

status reg.
data reg.

System

User

COMP3221 lec40-exception-review.4 Saeid Nooshabadi

Reasons for Exceptions/Interrupts

°Hardware errors: memory parity error

°External I/O Event
• High Priority and Low Priority I/O events

° Illegal instruction
°Virtual memory

• Write protection violation
• Page fault - page is on disk
• Invalid Address - outside of address range

°Arithmetic overflow
• Floating Point Exceptions

°Software Interrupts (invoke Op Sys
routine)

COMP3221 lec40-exception-review.5 Saeid Nooshabadi

SWI

°How does user invoke the OS?
•swi instruction: invoke the OS code
(Go to 0x00000008, change to privileged
mode)

• By software convention,number xxx in
swi xxx has system service requested:
OS performs request

COMP3221 lec40-exception-review.6 Saeid Nooshabadi

Software/Hardware Resources for Exceptions
° Registers to use in exception routine

• All modes of operation have registers lr_mode and sp_mode
in their bank for use; don’t have to be saved

• Registers r8 – r12 are also available in fiq bank.

° Enable/Disable Interrupt & Fast Interrupt Bits

° Privileged/User mode to protect when can Disable
Interrupts

° PC address of instruction causing the exception or the
return address saved in lr_mode.

° Exception priority in case of multiple simultaneous
exceptions

° Jump to Exception vectors at 0x00000008 - 0x0000001C
° Mode bits in CPSR to show the cause of exception
° Priority levels hardware/software to take multiple interrupts
° Possible register showing cause of interrupts

COMP3221 lec40-exception-review.7 Saeid Nooshabadi

Support for ARM Modes of Operations

COMP3221 lec40-exception-review.8 Saeid Nooshabadi

CPSR Encoding for Operating Modes & Interrupts

mode Mode of Operation

T ARM vs Thumb State (We only use ARM in
COMP3221

F FIQ Fast interrupts Disable bit

I IRQ Normal interrupt Disable bit

NZCV Condition Flags

CPSR

Changing mode bits is only possible in
privileged modes

COMP3221 lec40-exception-review.9 Saeid Nooshabadi

Switching between Modes (User to FIQ Mode)

FIQ
EXCEPTION

User mode CPSR copied to FIQ mode SPSR

cpsr

r15 (pc)
r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8
r7

r4
r5

r2
r1
r0

r3

r6

r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

Registers in use
User Mode

spsr_fiq
cpsr

r7

r4
r5

r2
r1
r0

r3

r6

r15 (pc)
r14_fiq
r13_fiq
r12_fiq

r10_fiq
r11_fiq

r9_fiq
r8_fiq

r14 (lr)
r13 (sp)

r12

r10
r11

r9
r8

Registers in use
FIQ Mode

spsr_fiq

Return address calculated from
User mode PC value and stored

in FIQ mode LR

COMP3221 lec40-exception-review.10 Saeid Nooshabadi

° When an exception
occurs, the ARM core:
• Copies CPSR into

SPSR_<mode>
• Sets appropriate CPSR

bits
Interrupt disable flags if
appropriate.

• Maps in appropriate
banked registers

• Stores the “return
address” in LR_<mode>

• Sets PC to vector address

Exception Handling and the Vector Table

0x00000000

0x0000001C
0x00000018
0x00000014
0x00000010
0x0000000C
0x00000008
0x00000004

Reset
Undefined Instr

FIQ
IRQ

Reserved
Data Abort

Prefetch Abort
SWISWI

° To return, exception handler needs to:
• Restore CPSR from SPSR_<mode>
• Restore PC from LR_<mode> via movs pc, lr or subs pc, lr, #4

COMP3221 lec40-exception-review.11 Saeid Nooshabadi

ARM Modes of Operations
° 10000 User Normal user code

° 10001 FIQ Processing fast interrupts

° 10010 IRQ Processing standard interrupts

° 10011 SVC Processing software interrupts (SWIs)

° 10111 Abort Processing memory faults

° 11011 Undef Handling undefined instruction traps

° 11111 System Running privileged operating
system tasks

CPSR

Privileged Modes

Non-Privileged
Mode

COMP3221 lec40-exception-review.12 Saeid Nooshabadi

Future of Wireless Embedded Devices
° The future will see smart technologies that will allow

devices to be connected to any network that is available,
while automatically collecting the information users want.
Technically, the new wireless is also predicted to be
smarter in size and power as traditional chips have been
power hungry. This change will see tiny, inexpensive,
embedded networks being integrated into almost any
manufactured object. These embedded networks could
also be tied to sensors that could monitor everything from
environmental conditions to peak-hour traffic.

° Interestingly, speech recognition is predicted to boom as
people prefer to talk rather than type commands or text on
small key pads that are crammed into mobile phones and
personal digital assistants

Gerry Purdy - wireless analyst
Silicon Valley 4.0 Conference

http://www.siliconvalley4.com/

COMP3221 lec40-exception-review.13 Saeid Nooshabadi

Multiple Exceptions/Interrupts

°Problem: What if multiple exceptions
and interrupts come simultaneously

°Options:
• drop any conflicting interrupts/ exceptions:
unrealistic, they may be important

• simultaneously handle multiple interrupts
exceptions: unrealistic, may not be able to
synchronize them (such as with multiple
I/O interrupts)

• Handle them one by one in order of
priority: sounds good

COMP3221 lec40-exception-review.14 Saeid Nooshabadi

ARM Prioritized Exceptions
Exception Type Priority

(1=High, 6=Low)

Reset 1

Data Abort 2

Fast Interrupt (FIQ) 3

Interrupt (IRQ) 4

Prefetch Abort 5

Software Interrupt (SWI) 6

Undefined Instruction 6

COMP3221 lec40-exception-review.15 Saeid Nooshabadi

Taking New Exception While Handling Exception

°Problem: What if we’re handling an Data
Abort exception and need to make an SWI
call?

• Each exception has its own version of registers
lr_mode and sp_mode in their bank; so simply
switch the supervisor mode

• Other registers need saving on the mode stack.

°One SWI invoking another SWI?
• Ok, provided SWI routine save lr_swi and
sp_swi on the SWI stack on entry to routine as
well.

COMP3221 lec40-exception-review.16 Saeid Nooshabadi

Taking New Interrupt While Handling Exception

°Problem: What if we’re handling an Data
Abort exception and an I/O interrupt
(printer ready, for example) comes in?

• It is ignored since all exceptions disable
IRQ (I bit = 1)

• We can take interrupts by re-enabling them
setting IRQ bit (I bit = 0); re-entrant
interrupts

• FIQ interrupt can be disabled (F bit = 1)
only by FIQ interrupt.

COMP3221 lec40-exception-review.17 Saeid Nooshabadi

So Many Devices One FIQ/IRQ
° Two interrupt request signals FIQ

and IRQ never enough for all of
the I/O devices

° Need a mechanism to attach
multiple devices to the same IRQ
pin.

° Solution: Use Interrupt Controller
to attach multiple devices to the
same IRQ pin.

ARM
Processor

Core

CPSR 7

IRQ

• Interrupt Controller controls how multiple peripherals
can interrupt the ARM processor. Essentially, the
interrupt controller acts as a large AND-OR gate

• In the event of an IRQ a combination of hardware and
software techniques are required to detect the sources
of interrupt and provide a system of priority and
queuing.

COMP3221 lec40-exception-review.18 Saeid Nooshabadi

Nested Interrupt Support

° If going to support nested interrupts from
multiple sources by re-enabling IRQ (I bit = 0),
what must be saved/ restored on entry/exit of
nested interrupt?

• Save/restore all things associated with current
interrupt: interrupt PC in lr_irq, lr_sp, spsr,

• Any registers used beyond lr_irq and sp_irq
° Problem: How many levels of recursion can we

allow in interrupts
• i.e. how deep the stack can grow?

° Solution: Prioritization and Priority levels

COMP3221 lec40-exception-review.19 Saeid Nooshabadi

Prioritized Interrupts (#1/2)

° Interrupt Controller support to simplify
software:

• Set priority levels for interrupts

• Process cannot be preempted by
interrupt at same or lower "level"

• When an interrupt is handled, take the
highest priority interrupt

- The handler may need to save the state of
the preempted program

• Return to interrupted code as soon as no
more interrupts at a higher level

COMP3221 lec40-exception-review.20 Saeid Nooshabadi

Prioritized Interrupts (#2/2)
° To implement, we need an IRQ Stack:

• portion of address space allocated for stack of “IRQ
Frames”

• each frame represents one interrupt: contains enough
info to restart handling the preempted interrupt if
necessary.

° In addition we need to keep the priority levels
information

• it is kept in a First-In Last-Out (FILO) stack in the
Interrupt Controller (IC) hardware

• current priority value is pushed onto a FILO stack and
the current priority is updated to the higher priority.

• on return the current interrupt level is updated with the
last stored interrupt level from the stack.

° The priority levels information can be kept in IRQ
stack if Interrupt controller does not support it.

COMP3221 lec40-exception-review.21 Saeid Nooshabadi

Modified Interrupt Handler (#1/2)
° Problem: When an interrupt comes in while

handling another interrupt, lr_irq and spsr_irq
get overwritten immediately by hardware. Lost lr_irq means loss of user program.

° Solution: Modify interrupt handler. When first
interrupt comes in:

• disable interrupts (Done by hardware)
• save lr_irq, sp_irq and spsr_irq, and any

registers it may use on IRQ Stack
• mask out the lower or same priority interrupts (Done via

Interrupt controller hardware, when supports it)
• re-enable interrupts
• continue handling current interrupt
• at the end disable the interrupts, unmask the lower or

same priority interrupts, restore lr_irq, sp_irq, and spsr_irq, and any registers it has used from IRQ Stack
and return to user code.

COMP3221 lec40-exception-review.22 Saeid Nooshabadi

Modified Interrupt Handler (#2/2)
° When next (or any later) of higher priority

interrupt comes in:
• interrupt the first onedisable interrupts (Done by

hardware)
• save lr_irq, sp_irq and spsr_irq, and any

registers it may use on IRQ Stack

• mask out the lower or same priority interrupts (Done
via Interrupt controller hardware, when supports it)

• re-enable interrupts

• continue handling current interrupt

• at the end disable the interrupts, unmask the same
priority interrupts, restore lr_irq, sp_irq, and
spsr_irq, and any registers it has used from IRQ
Stack and return to lower priority interrupt.

COMP3221 lec40-exception-review.23 Saeid Nooshabadi

Re-entrant Interrupt Routine Review?

°How allow interrupt of interrupts and
safely save registers?

°Stack?
• Resources consumed by each interrupt,
so cannot tolerate arbitrary deep nesting
of exceptions/interrupts

°With priority level system only
interrupted by higher priority interrupt,
so cannot be recursive

°Only need one save area (“interrupt
frame”) per priority level

COMP3221 lec40-exception-review.24 Saeid Nooshabadi

Supporting Multiple Interrupts in Software

°Exception/Interrupt behavior
determined by combination of
hardware mechanisms and operating
system strategies

°same hardware with different OS acts
differently

°A popular software model for multiple
interrupts/exceptions, often used in
Unix OS, is to set priority levels

• This is an OS concept, not a HW concept

• HW just needs mechanisms to support it

COMP3221 lec40-exception-review.25 Saeid Nooshabadi

Things to Remember

°Privileged Modes vs. User Mode: OS
can provide security and fairness

°swi: provides a way for a programmer
to avoid having to know details of
each I/O device

°To be acceptable, interrupt handler
must:

• service all interrupts (no drops)

• service by priority

• make all users believe that no interrupt
has occurred

