UNIX File Management

UNIX File Management

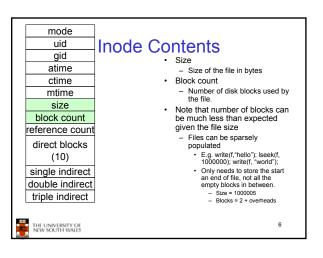
- · We will focus on two types of files
 - Ordinary files (stream of bytes)
 - Directories
- · And mostly ignore the others
 - Character devices
 - Block devices
 - Named pipes
 - Sockets
 - Symbolic links

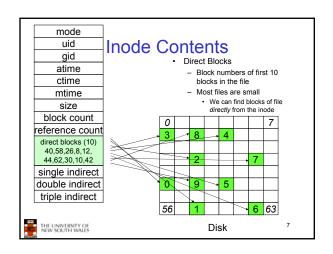
THE UNIVERSITY OF NEW SOUTH WALES 2

UNIX index node (inode)

- · Each file is represented by an Inode
- · Inode contains all of a file's metadata
 - Access rights, owner,accounting info
- (partial) block index table of a file
- Each inode has a unique number (within a partition)
 - System oriented name
 - Try 'Is -i' on Unix (Linux)
- · Directories map file names to inode numbers
 - Map human-oriented to system-oriented names
 - Mapping can be many-to-one
 - Hard links

3

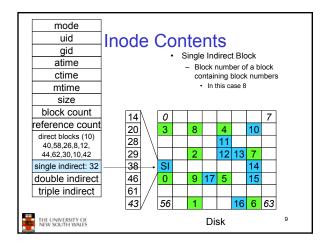

mode
uid
gid
atime
ctime
mtime
size
block count
reference count
direct blocks
(10)
single indirect
double indirect
triple indirect


THE UNIVERSITY OF NEW SOUTH WALES

Inode Contents

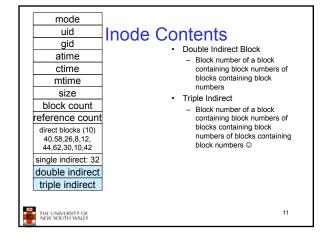
- Mode
 - Type
 - Regular file or directory
 - Access mode
 - rwxrwxrwx
- Uid
 - User ID
- Gid
 - Group ID

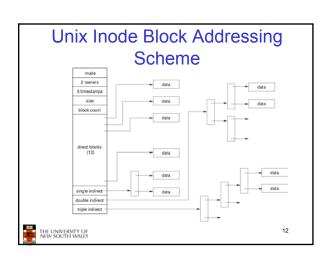
	1		
mode			
uid	Inode Contents		
gid			
atime			
ctime	• atime		
mtime	 Time of last access 		
size	• ctime		
block count	- Time when file was		
reference count	- Time when me was		
direct blocks			
(10)	• mtime		
single indirect	– Time when file was		
double indirect	last modified		
triple indirect	•		
a.p.o .nanoot	I		
THE UNIVERSITY OF NEW SOUTH WALES		5	



Problem

- How do we store files greater than 10 blocks in size?
 - Adding significantly more direct entries in the inode results in many unused entries most of the time.


8



Single Indirection

- · Requires two disk access to read
 - One for the indirect block; one for the target block
- · Max File Size
 - In previous example
 - 10 direct + 8 indirect = 18 block file
 - A more realistic example
 - Assume 1Kbyte block size, 4 byte block numbers
 - 10 * 1K + 1K/4 * 1K = 266 Kbytes
- For large majority of files (< 266 K), only one or two accesses required to read any block in file.

Max File Size

- · Assume 4 bytes block numbers and 1K blocks
- · The number of addressable blocks
 - Direct Blocks = 12
 - Single Indirect Blocks = 256
 - Double Indirect Blocks = 256 * 256 = 65536
 - Triple Indirect Blocks = 256 * 256 * 256 = 16777216
- May File Size
 - 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB

13

Some Best and Worst Case Access Patterns

- · To read 1 byte
 - Best:
 - · 1 access via direct block
 - Worst:
 - · 4 accesses via the triple indirect block
- To write 1 byte
 - Best
 - 1 write via direct block (with no previous content)
 - Worst:
 - 4 reads (to get previous contents of block via triple indirect) +
 - 1 write (to write modified block back)

14

Worst Case Access Patterns with Unallocated Indirect Blocks

- · Worst to write 1 byte
 - 4 writes (3 indirect blocks; 1 data)
 - 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)
 - 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1; write 1 data)
 - 3 reads, 2 writes (read 2, read-write 1; write 1 data)
- Worst to read 1 byte
 - If reading writes an zero-filled block on disk
 - Worst case is same as write 1 byte
 - If not, worst-case depends on how deep is the current indirect block tree.

15

Inode Summary

- The inode contains the on disk data associated with a file
 - Contains mode, owner, and other bookkeeping
 - Efficient random and sequential access via indexed allocation
 - Small files (the majority of files) require only a single access
 - Larger files require progressively more disk accesses for random access
 - · Sequential access is still efficient
 - Can support really large files via increasing levels of indirection

16

Where/How are Inodes Stored

Boot Super Inode Block Block Array Data Blocks

- · System V Disk Layout (s5fs)
 - Boot Block
 - · contain code to bootstrap the OS
 - Super Block
 - Contains attributes of the file system itself
 - e.g. size, number of inodes, start block of inode array, start of data block area, free inode list, free data block list
 - Inode Array
- Data blocks

17

Some problems with s5fs

- · Inodes at start of disk; data blocks end
 - Long seek times
 - Must read inode before reading data blocks
- · Only one superblock
 - Corrupt the superblock and entire file system is lost
- · Block allocation suboptimal
 - Consecutive free block list created at FS format time
 - Allocation and de-allocation eventually randomises the list resulting the random allocation
- · Inodes allocated randomly
 - Directory listing resulted in random inode access patterns

Berkeley Fast Filesystem (FFS)

- · Historically followed s5fs
 - Addressed many limitations with s5fs
 - Linux mostly similar, so we will focus on Linux

19

The Linux Ext2 File System

- · Second Extended Filesystem
 - Evolved from Minix filesystem (via "Extended Filesystem")
- - Block size (1024, 2048, and 4096) configured as FS creation
 - Pre-allocated inodes (max number also configured at FS
 - Block groups to increase locality of reference (from BSD
 - Symbolic links < 60 characters stored within inode
- Main Problem: unclean unmount →e2fsck
 - Ext3fs keeps a journal of (meta-data) updates
 - Journal is a file where updated are logged
 - Compatible with ext2fs

20

Layout of an Ext2 Partition

Boot	Block Group	Block Group
Block	0	 n

- Disk divided into one or more partitions
- · Partition:
 - Reserved boot block,
 - Collection of equally sized block groups
 - All block groups have the same structure

21

Layout of a Block Group

Super Block	Group Descrip- tors	Data Block Bitmap	Inode Bitmap	Inode Table	Data blocks
1 blk	n blks	1 blk	1 blk	m blks	k blks

1 blk n blks 1 blk Replicated super block

- For e2fsck

Group descriptors

- Bitmaps identify used inodes/blocks
- All block have the same number of data blocks
- Advantages of this structure:
 - Replication simplifies recovery
 - Proximity of inode tables and data blocks (reduces seek time)

m blks

k blks

THE UNIVERSITY OF NEW SOUTH WALES

Superblocks

- Size of the file system, block size and similar parameters
- · Overall free inode and block counters
- · Data indicating whether file system check is needed:
 - Uncleanly unmounted
 - Inconsistency
 - Certain number of mounts since last check
 - Certain time expired since last check
- Replicated to provide redundancy to add recoverability

23

Group Descriptors

- · Location of the bitmaps
- · Counter for free blocks and inodes in this
- · Number of directories in the group

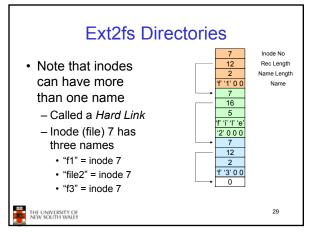
- · EXT2 optimisations
 - Read-ahead for directories
 - · For directory searching
 - Block groups cluster related inodes and data blocks
 - Pre-allocation of blocks on write (up to 8 blocks)
 - · 8 bits in bit tables
 - · Better contiguity when there are concurrent writes
- FFS optimisations
 - Files within a directory in the same group

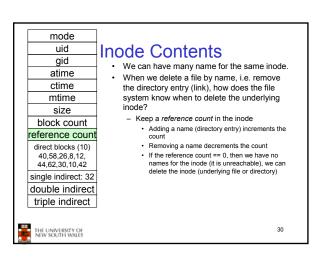
25

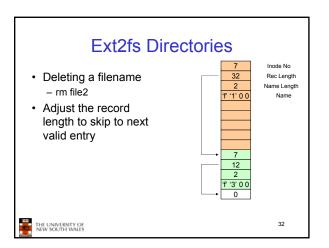
Thus far...

- · Inodes representing files laid out on disk.
- · Inodes are referred to by number!!!
 - How do users name files? By number?
 - Try Is -i to see how useful inode numbers are....

26


Ext2fs Directories inode rec_len | name_len name... · Directories are files of a special type Consider it a file of special format, managed by the kernel, that


- - uses most of the same machinery to implement it Inodes etc.
- · Directories translate names to inode numbers
- · Directory entries are of variable length
- Entries can be deleted in place
 - inode = 0
 - Add to length of previous entry
 - use null terminated strings for names


27

Ext2fs Directories Inode No Rec Length • "f1" = inode 7 Name Length f' '1' 0 0 • "file2" = inode 43 43 • "f3" = inode 85 16 'f' 'i' 'l' 'e 2'000 12 f' '3' 0 0 THE UNIVERSITY OF NEW SOUTH WALES

Kernel File-related Data Structures and Interfaces

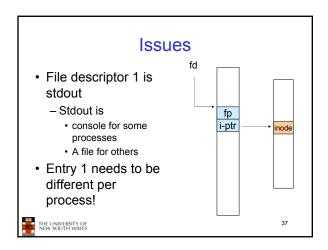
- We have reviewed how files and directories are stored on disk
- We know the UNIX file system-call interface
 - open, close, read, write, Iseek,.....
- · What is in between?

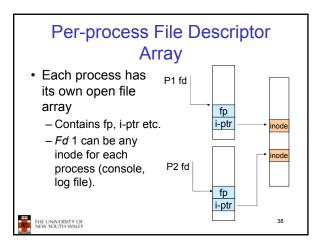
33

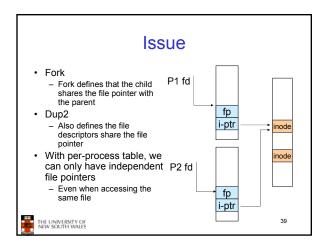
What do we need to keep track of?

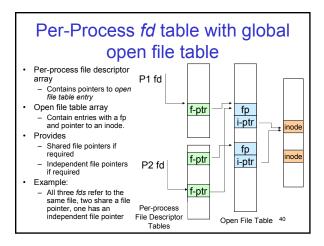
- · File descriptors
 - Each open file has a file descriptor
 - Read/Write/Iseek/.... use them to specify which file to operate on.
- File pointer
 - Determines where in the file the next read or write is performed
- Mode
 - Was the file opened read-only, etc....

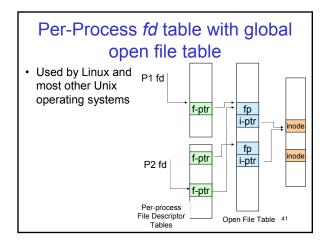
24


An Option?


- Use inode numbers as file descriptors and add a file pointer to the inode
- Problems
 - What happens when we concurrently open the same file twice?
 - We should get two separate file descriptors and file pointers....



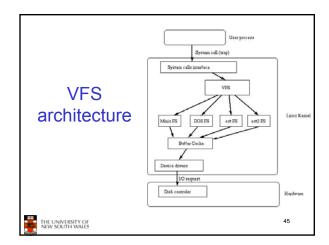

35


An Option? • Single global open file array – fd is an index into the array – Entries contain file pointer and pointer to an inode

Older Systems only had a single file system • They had file system specific open, close, read, write, ... calls. • The open file table pointed to an in-memory representation of the inode – inode format was specific to the file system used (s5fs, Berkley FFS, etc) • However, modern systems need to support many file system types – ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

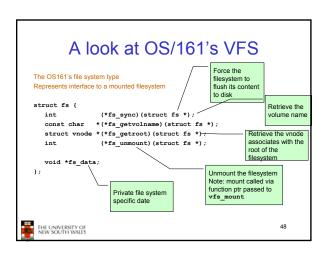
Supporting Multiple File Systems

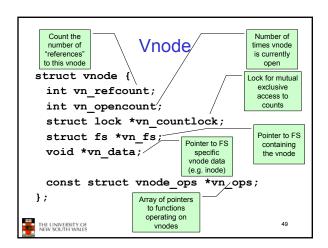
- Alternatives
 - Change the file system code to understand different file system types
 - Prone to code bloat, complex, non-solution
 - Provide a framework that separates file system independent and file system dependent code.
 - · Allows different file systems to be "plugged in"
 - File descriptor, open file table and other parts of the kernel can be independent of underlying file system

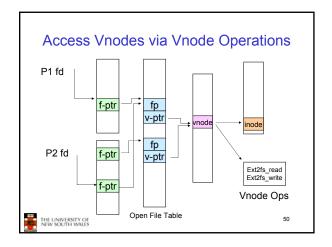

43


Virtual File System (VFS)

- Provides single system call interface for many file systems
 - E.g., UFS, Ext2, XFS, DOS, ISO9660,...
- Transparent handling of network file systems
 - E.g., NFS, AFS, CODA
- File-based interface to arbitrary device drivers (/dev)
- File-based interface to kernel data structures (/proc)
- · Provides an indirection layer for system calls
 - File operation table set up at file open time
 - Points to actual handling code for particular type
 - Further file operations redirected to those functions



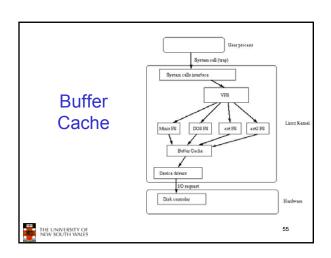

44

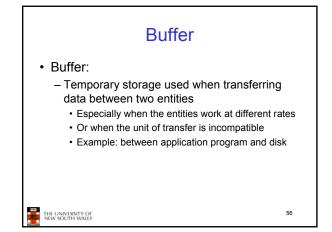


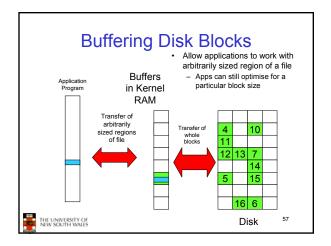
VFS Interface Reference S.R. Kleiman., "Vnodes: An Architecture for Multiple File System Types in Sun Unix," USENIX Association: Summer Conference Proceedings, Atlanta, 1986 Linux and OS/161 differ slightly, but the principles are the same Two major data types Vfs Represents all file system types Contains pointers to functions to manipulate each file system as a whole (e.g. mount, unmount) Form a standard interface to the file system Vnode Represents a file (inode) in the underlying filesystem Points to the real inode Contains pointers to functions to manipulate files/inodes (e.g. open, close, read, write,...)

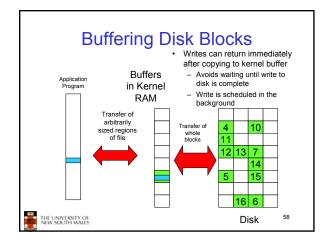

```
Vnode Ops

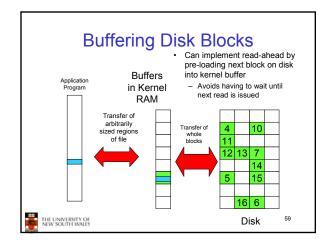
• Note that most operation are on vnodes. How do we operate on file names?

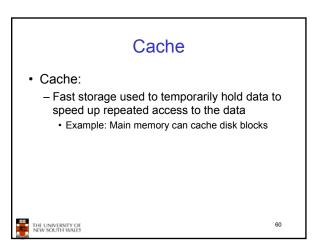

- Higher level API on names that uses the internal VOP * functions

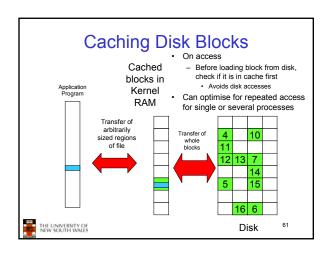

int vfs_open(char *path, int openflags, struct vnode **ret);
void vfs_close(struct vnode *vn);
int vfs_readlink(char *path, struct uio *data);
int vfs_mkdir(char *path);
int vfs_mkdir(char *path);
int vfs_remove(char *path);
int vfs_remove(char *path);
int vfs_rename(char *oldpath, char *newpath);
int vfs_getowd(char *path);
int vfs_getowd(struct uio *buf);


**PRICENTIFICATION**


**PRICENTIFI
```


```
Example: OS/161 emufs vnode
                                      ops
                                                emufs_file_gettype,
emufs_tryseek,
* Function table for emufs
   files.
                                                emufs_fsync,
UNIMP, /* mmap */
static const struct vnode_ops
  emufs_fileops = {
   VOP_MAGIC, /* mark this a
   valid vnode ops table */
                                                emufs truncate.
                                                NOTDIR, /* namefile */
                                                NOTDIR.
   emufs open,
                                                           /* symlink */
                                                NOTDIR.
   emufs_close,
emufs_reclaim,
                                                NOTDIR, /* mkdir */
NOTDIR, /* link */
                                                          /* remove */
/* rmdir */
                                                NOTDIR,
                                                NOTDIR,
   NOTDIR, /* readlink */
NOTDIR, /* getdirentry */
                                                NOTDIR,
                                                          /* lookup */
   emufs write,
                                                NOTDIR.
                                                NOTDIR, /* lookparent */
   emufs_stat,
```





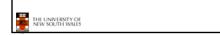
Buffering and caching are related

- Data is read into buffer; extra cache copy would be wasteful
- · After use, block should be put in cache
- · Future access may hit cached copy
- Cache utilises unused kernel memory space; may have to shrink

62

Unix Buffer Cache On read - Hash the device#, block# - Check if match in buffer cache - Yes, simply use in-memory copy - No, follow the collision chain - If not found, we load block from disk into cache

Replacement


- What happens when the buffer cache is full and we need to read another block into memory?
 - We must choose an existing entry to replace
 - Similar to page replacement policy
 - · Can use FIFO, Clock, LRU, etc.
 - Except disk accesses are much less frequent and take longer than memory references, so LRU is possible
 - · However, is strict LRU what we want?
 - What is different between paged data in RAM and file data in RAM?

64

File System Consistency

- Paged data is not expected to survive crashes or power failures
- · File data is expected to survive
- Strict LRU could keep critical data in memory forever if it is frequently used.

File System Consistency

- Generally, cached disk blocks are prioritised in terms of how critical they are to file system consistency
 - Directory blocks, inode blocks if lost can corrupt the entire filesystem
 - · E.g. imagine losing the root directory
 - These blocks are usually scheduled for immediate write to disk
 - Data blocks if lost corrupt only the file that they are associated with
 - These block are only scheduled for write back to disk periodically
 - In UNIX, flushd (flush daemon) flushes all modified blocks to disk every 30 seconds

65

File System Consistency • Alternatively, use a write-through cache

- - All modified blocks are written immediately to disk
 - Generates much more disk traffic
 - Temporary files written back
 - Multiple updates not combined
 - Used by DOS
 - Gave okay consistency when
 Floppies were removed from drives
 Users were constantly resetting (or crashing) their machines
 Still used, e.g. USB storage devices

