
1

I/O Management
Intro

Chapter 5

2

I/O Devices

• There exists a large variety of I/O devices:
– Many of them with different properties
– They seem to require different interfaces to

manipulate and manage them
• We don’t want a new interface for every device
• Diverse, but similar interfaces leads to code

duplication

• Challenge:
– Uniform and efficient approach to I/O

3

Categories of I/O Devices (by usage)

• Human readable
– Used to communicate with the user
– Printers, Video Display, Keyboard, Mouse

• Machine readable
– Used to communicate with electronic equipment
– Disk and tape drives, Sensors, Controllers, Actuators

• Communication
– Used to communicate with remote devices
– Ethernet, Modems, Wireless

4

Differences that Impact I/O Device
Handling

• Data rate
– May be differences of several orders of

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O
• Keyboard needs 10 KHz processor to keep up
• Gigabit Ethernet needs 100 GHz processor…..

5

Sample Data Rates

6

Differences that Impact I/O Device
Handling

• Application
– Disk used to store files requires file-

management software
• May provide feature specific to function, e.g. non-

volatile RAM.
– Disk used to store virtual memory pages

needs special hardware and software to
support it

– Terminal used by system administrator may
have a higher priority

7

Differences that Impact I/O Device
Handling

• Complexity of control
• Unit of transfer

– Data may be transferred as a stream of bytes
for a terminal or in larger blocks for a disk

• Data representation
– Encoding schemes

• Error conditions
– Devices respond to errors differently

• Expected error rate also differs

8

Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports
– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory
– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O

9

Bus Architectures

(a) A single-bus architecture
(b) A dual-bus memory architecture

10

Interrupts Revisited

• Devices connected to an Interrupt Controller via lines on
an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and is
eventually acknowledged.

• Exact details are architecture specific.

11

Direct Memory Access
• Takes control of the bus from the CPU to

transfer data to and from memory over the
system bus

• Reduced number of interrupts occur
– No expensive context switches

CPU Memory Device

12

DMA
• Cycle stealing is used to transfer data on the system bus

– The instruction cycle is suspended so data can be transferred
– The CPU pauses one bus cycle

• CPU Cache can hopefully avoid such pauses by hide DMA bus
transactions

– Cycle stealing causes the CPU to execute more slowly
• Still more efficient than CPU doing transfer itself

System Bus Cycles

Bus Cycles - CPU

Bus Cycles - DMA

Very Simplified Model of Cycle
Stealing

13

DMA
• Commonly burst-mode is used

– CPU uses several consecutive cycles to load entire
cache line

– DMA writes (or reads) a similar sized burst
– Reason: More efficient (less cycles overall) to transfer

a sequence of words than a word at a time.
• No bus arbitration, read/write setup, or addressing cycles

required after first transfer.

• Number of required busy cycles can be cut by
– Path between DMA module and I/O module that does

not include the system bus

14

• Also called polling, or busy
waiting

• I/O module (controller) performs
the action, not the processor

• Sets appropriate bits in the I/O
status register

• No interrupts occur
• Processor checks status until

operation is complete
– Wastes CPU cycles

Programmed I/O

15

Interrupt-Driven I/O
• Processor is interrupted when I/O

module (controller) ready to
exchange data

• Processor is free to do other work
• No needless waiting
• Consumes a lot of processor time

because every word read or
written passes through the
processor

16

Direct Memory Access

• Transfers a block of data
directly to or from memory

• An interrupt is sent when
the task is complete

• The processor is only
involved at the beginning
and end of the transfer

17

The Process to Perform DMA
Transfer

18

Evolution of the I/O Function
• Processor directly controls a peripheral

device
– Example: CPU controls a flip-flop to

implement a serial line

CPU Memory Flip
Flop

Serial
Line

Bus

19

Evolution of the I/O Function
• Controller or I/O module is added

– Processor uses programmed I/O without interrupts
– Processor does not need to handle details of external devices
– Example: A Univeral Asynchronous Receiver Transmitter

• CPU simply reads and writes bytes to I/O controller
• I/O controller responsible for managing the signalling

CPU Memory UART
Serial
Line

Bus

20

Evolution of the I/O Function

• Controller or I/O module with interrupts
– Processor does not spend time waiting for an

I/O operation to be performed

CPU Memory UART
Serial
Line

Bus

Interrupt
Line

21

Evolution of the I/O Function

• Direct Memory Access
– Blocks of data are moved into memory

without involving the processor
– Processor involved at beginning and end only

CPU Memory UART
Serial
Line

Bus

Interrupt
Line

22

Evolution of the I/O Function

• I/O module has a separate processor
– Example: SCSI controller

• Controller CPU executes SCSI program code out
of main memory

CPU Memory
SCSI

Controller
SCSI

CableBus

Interrupt
Line CPU

23

Evolution of the I/O Function
• I/O processor

– I/O module has its own local memory, internal bus,
etc.

– Its a computer in its own right
– Example: Myrinet Multi-gigabit Network Controller

CPU Memory
Myrinet

Controller
Network
Cable

Bus

Interrupt
Line CPU RAM

