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I/O Devices

• There exists a large variety of I/O devices:
– Many of them with different properties
– They seem to require different interfaces to 

manipulate and manage them
• We don’t want a new interface for every device
• Diverse, but similar interfaces leads to code 

duplication

• Challenge:
– Uniform and efficient approach to I/O 
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Categories of I/O Devices (by usage)

• Human readable
– Used to communicate with the user
– Printers, Video Display, Keyboard, Mouse

• Machine readable
– Used to communicate with electronic equipment
– Disk and tape drives, Sensors, Controllers, Actuators

• Communication
– Used to communicate with remote devices
– Ethernet, Modems, Wireless
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Differences that Impact I/O Device 
Handling

• Data rate
– May be differences of several orders of 

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O
• Keyboard needs 10 KHz processor to keep up
• Gigabit Ethernet needs 100 GHz processor…..
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Sample Data Rates
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Differences that Impact I/O Device 
Handling

• Application
– Disk used to store files requires file-

management software
• May provide feature specific to function, e.g. non-

volatile RAM.
– Disk used to store virtual memory pages 

needs special hardware and software to 
support it

– Terminal used by system administrator may 
have a higher priority
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Differences that Impact I/O Device 
Handling

• Complexity of control
• Unit of transfer

– Data may be transferred as a stream of bytes 
for a terminal or in larger blocks for a disk

• Data representation
– Encoding schemes

• Error conditions
– Devices respond to errors differently

• Expected error rate also differs
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Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports 
– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory
– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O 
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Bus Architectures

(a) A single-bus architecture
(b) A dual-bus memory architecture
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Interrupts Revisited

• Devices connected to an Interrupt Controller via lines on 
an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and is 
eventually acknowledged. 

• Exact details are architecture specific.
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Direct Memory Access
• Takes control of the bus from the CPU to 

transfer data to and from memory over the 
system bus

• Reduced number of interrupts occur
– No expensive context switches

CPU Memory Device
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DMA
• Cycle stealing is used to transfer data on the system bus

– The instruction cycle  is suspended so data can be transferred
– The CPU pauses one bus cycle

• CPU Cache can hopefully avoid such pauses by hide DMA bus 
transactions

– Cycle stealing causes the CPU to execute more slowly
• Still more efficient than CPU doing transfer itself

System Bus Cycles

Bus Cycles - CPU

Bus Cycles - DMA

Very Simplified Model of Cycle 
Stealing 
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DMA
• Commonly burst-mode is used

– CPU uses several consecutive cycles to load entire 
cache line

– DMA writes (or reads) a similar sized burst
– Reason: More efficient (less cycles overall) to transfer 

a sequence of words than a word at a time.
• No bus arbitration, read/write setup, or addressing cycles 

required after first transfer.

• Number of required busy cycles can be cut by 
– Path between DMA module and I/O module that does 

not include the system bus
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• Also called polling, or busy 
waiting

• I/O module (controller) performs 
the action, not the processor

• Sets appropriate bits in the I/O 
status register

• No interrupts occur
• Processor checks status until 

operation is complete
– Wastes CPU cycles

Programmed I/O
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Interrupt-Driven I/O
• Processor is interrupted when I/O 

module (controller) ready to 
exchange data

• Processor is free to do other work
• No needless waiting
• Consumes a lot of processor time 

because every word read or 
written passes through the 
processor
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Direct Memory Access

• Transfers a block of data 
directly to or from memory

• An interrupt is sent when 
the task is complete

• The processor is only 
involved at the beginning 
and end of the transfer
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The Process to Perform DMA 
Transfer
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Evolution of the I/O Function
• Processor directly controls a peripheral 

device
– Example: CPU controls a flip-flop to 

implement a serial line

CPU Memory Flip
Flop

Serial 
Line

Bus
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Evolution of the I/O Function
• Controller or I/O module is added

– Processor uses programmed I/O without interrupts
– Processor does not need to handle details of external devices
– Example: A Univeral Asynchronous Receiver Transmitter

• CPU simply reads and writes bytes to I/O controller
• I/O controller responsible for managing the signalling

CPU Memory UART
Serial 
Line

Bus
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Evolution of the I/O Function

• Controller or I/O module with interrupts
– Processor does not spend time waiting for an 

I/O operation to be performed

CPU Memory UART
Serial 
Line

Bus

Interrupt 
Line
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Evolution of the I/O Function

• Direct Memory Access
– Blocks of data are moved into memory 

without involving the processor
– Processor involved at beginning and end only

CPU Memory UART
Serial 
Line

Bus

Interrupt 
Line
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Evolution of the I/O Function

• I/O module has a separate processor
– Example: SCSI controller

• Controller CPU executes SCSI program code out 
of main memory

CPU Memory
SCSI 

Controller
SCSI

CableBus

Interrupt 
Line CPU
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Evolution of the I/O Function
• I/O processor

– I/O module has its own local memory, internal bus, 
etc.

– Its a computer in its own right
– Example: Myrinet Multi-gigabit Network Controller

CPU Memory
Myrinet

Controller
Network 
Cable

Bus

Interrupt 
Line CPU RAM


