
1

Virtual Memory II

2

TLB Recap

• Fast associative cache of page table

entries

– Contains a subset of the page table

– What happens if required entry for translation

is not present (a TLB miss)?

3

TLB Recap

• TLB may or may not be under OS control

– Hardware-loaded TLB

• On miss, hardware performs PT lookup and

reloads TLB

• Example: Pentium

– Software-loaded TLB

• On miss, hardware generates a TLB miss

exception, and exception handler reloads TLB

• Example: MIPS

4

R3000 TLB

Handling
• TLB refill is handled by

software

– An exception handler

• TLB refill exceptions

accessing kuseg are

expected to be frequent

– CPU optimised for handling

kuseg TLB refills by having

a special exception handler

just for TLB refills

kseg0

kuseg

0x00000000

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

5

Exception Vectors

Special exception

vector for kuseg

TLB refills

6

Special Exception Vector

• Can be optimised for TLB

refill only

– Does not need to check the

exception type

– Does not need to save any

registers

• It uses a specialised

assembly routine that only

uses k0 and k1.

– Does not check if PTE

exists

• Assumes virtual linear

array

• An example routine

mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay

slot

lw k1,0(k1) # may double

fault (k0 = orig EPC)

nop

mtc0 k1,C0_ENTRYLO

nop

tlbwr

jr k0

rfe

7

MIPS VM Related Exceptions
• TLB refill

– Handled via special exception vector

– Needs to be very fast

• Others handled by the general exception vector
– TLB Mod

• TLB modify exception, attempt to write to a read-only page

– TLB Load

• Attempt it load from a page with an invalid translation

– TLB Store

• Attempt to store to a page with an invalid translation

– Note: these can be slower as they are mostly either caused by
an error, or non-resident page.

• We never optimise for errors, and page-loads from disk dominate
the fault resolution cost.

8

c0 Registers

• c0_EPC
– The address of where to restart after the exception

• c0_status
– Kernel/User Mode bits, Interrupt control

• c0_cause
– What caused the exception

• c0_badvaddr
– The address of the fault

9

The TLB and EntryHi,EntryLo

c0_EntryHi

c0_EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

Each TLB entry

contains

• EntryHi to match

page# and ASID

•EntryLo which

contains frame#

and protection

TLB

c0 Registers

Used to read

and write

individual TLB

entries

10

c0 Registers

• N = Not cacheable

• D = Dirty = Write protect

• G = Global (ignore ASID

in lookup)

• V = valid bit

• 64 TLB entries

• Accessed via software through
Cooprocessor 0 registers

– EntryHi and EntryLo

11

c0 Index Register

• Used as an index to TLB entries

– Single TLB entries are manipulated/viewed through

EntryHi and EntryLo0

– Index register specifies which TLB entry to

change/view

12

Special TLB management

Instructions
• TLBR

– TLB read

• EntryHi and EntryLo are loaded from the entry pointer to by the
index register.

• TLBP
– TLB probe

– Set EntryHi to the entry you wish to match, index register is
loaded with the index to the matching entry

• TLBWR
– Write EntryHi and EntryLo to a psuedo-random location in the

TLB

• TLBWI
– Write EntryHi and EntryLo to the location in the TLB pointed to

by the Index register.

14

Cooprocessor 0 registers on a

refill exception
c0.EPC← PC

c0.cause.ExcCode← TLBL ; if read fault

c0.cause.ExcCode← TLBS ; if write fault

c0.BadVaddr← faulting address

c0.EntryHi.VPN← faulting address

c0.status← kernel mode, interrupts disabled.

c0.PC← 0x8000 0000

15

Outline of TLB miss handling

• Software does:
– Look up PTE corresponding to the faulting address

– If found:
• load c0_EntryLo with translation

• load TLB using TLBWR instructions

• return from exception

– Else, page fault

• The TLB entry (i.e. c0_EntryLo) can be:
– created on the fly, or

– stored completely in the right format in page table
• more efficient

16

OS/161 Refill Handler

• After switch to kernel stack, it simply calls the common

exception handler

– Stacks all registers

– Can (and does) call ‘C’ code

– Unoptimised

– Goal is ease of kernel programming, not efficiency

• Does not have a page table

– It uses the 64 TLB entries and then panics when it runs out.

• Only support 256K user-level address space

17

Demand Paging/Segmentation

• With VM, only parts of the program image need to be

resident in memory for execution.

• Can swap presently unused pages/segments to disk

• Reload non-resident pages/segment on demand.

– Reload is triggered by a page or segment fault

– Faulting process is blocked and another scheduled

– When page/segment is resident, faulting process is restarted

– May require freeing up memory first

• Replace current resident page/segment

• How determine replacement “victim”?

– If victim is unmodified (“clean”) can simply discard it

• This is reason for maintaining a “dirty” bit in the PT

18

• Why does demand paging/segmentation work?

– Program executes at full speed only when accessing

the resident set.

– TLB misses introduce delays of several microseconds

– Page/segment faults introduce delays of several

milliseconds

– Why do it?

• Answer

– Less physical memory required per process

• Can fit more processes in memory

• Improved chance of finding a runnable one

– Principle of locality

19

Principle of Locality

• An important observation comes from empirical
studies of the properties of programs.
– Programs tend to reuse data and instructions they
have used recently.

– 90/10 rule
"A program spends 90% of its time in 10% of its code"

• We can exploit this locality of references

• An implication of locality is that we can
reasonably predict what instructions and data a
program will use in the near future based on its
accesses in the recent past.

20

• Two different types of locality have been

observed:

– Temporal locality: states that recently accessed items

are likely to be accessed in the near future.

– Spatial locality: says that items whose addresses are

near one another tend to be referenced close

together in time.

21

Locality In A Memory-Reference Pattern

22

Working Set
• The pages/segments required by an application in a time

window (∆)is called its memory working set.

• Working set is an approximation of a programs’ locality
– if ∆ too small will not encompass entire locality.

– if ∆ too large will encompass several localities.

– if ∆ = ∞ ⇒ will encompass entire program.

– ∆’s size is an application specific tradeoff

• System should keep resident at least a process’s
working set
– Process executes while it remains in its working set

• Working set tends to change gradually
• Get only a few page/segment faults during a time window

• Possible to make intelligent guesses about which pieces will be
needed in the future

– May be able to pre-fetch page/segments

23

Working Set Model

∆

24

Thrashing

• CPU utilisation tends to increase with the degree of
multiprogramming
– number of processes in system

• Higher degrees of multiprogramming – less memory
available per process

• Some process’s working sets may no longer fit in RAM
– Implies an increasing page fault rate

• Eventually many processes have insufficient memory
– Can’t always find a runnable process

– Decreasing CPU utilisation

– System become I/O limited

• This is called thrashing.

25

Thrashing

• Why does thrashing occur?

Σ working set sizes > total physical memory size

26

Recovery From Thrashing

• In the presence of increasing page fault
frequency and decreasing CPU utilisation
– Suspend a few processes to reduce degree of
multiprogramming

– Resident pages of suspended processes will migrate
to backing store

– More physical memory becomes available
• Less faults, faster progress for runnable processes

– Resume suspended processes later when memory
pressure eases

27

What is the difference?

/* reset array */

int array[10000][10000];

int i,j;

for (i = 0; i < 10000; i++) {

for (j = 0; j < 10000;j ++) {

array[i][j] = 0;

/* array[j][i] = 0 */

}

}

Array[a][b]

b

a

28

VM Management Policies
• Operation and performance of VM system is
dependent on a number of policies:
– Page table format (my be dictated by hardware)

• Multi-level

• Hashed

– Page size (may be dictated by hardware)

– Fetch Policy

– Replacement policy

– Resident set size
• Minimum allocation

• Local versus global allocation

– Page cleaning policy

– Degree of multiprogramming

29

Page Size

Increasing page size

� Increases internal fragmentation
� reduces adaptability to working set size

� Decreases number of pages
� Reduces size of page tables

� Increases TLB coverage
� Reduces number of TLB misses

� Increases page fault latency
� Need to read more from disk before restarting process

� Increases swapping I/O throughput
� Small I/O are dominated by seek/rotation delays

� Optimal page size is a (work-load dependent) trade-off.

30

512 bytesDEC VAX

8K - 4M bytes in powers of 8DEC Alpha

4K and 64K bytesARM

4K and 4M bytesIntel Pentium

4k – 16M bytes in powers of 4MIPS R4000

8K – 4M bytes in powers of 8UltraSPARC

4K bytes + “blocks”PowerPC

4K – 256M bytes in powers of 4Intel IA-64

512 bytesIBM AS/400

4K bytesIBM 370/XA

1K words (36-bit)Honeywell/Multics

512 words (48-bit)Atlas

31

Page Size

• Multiple page sizes provide flexibility to

optimise the use of the TLB

• Example:

– Large page sizes can be use for code

– Small page size for thread stacks

• Most operating systems support only a

single page size

– Dealing with multiple page sizes is hard!

32

Fetch Policy

• Determines when a page should be brought into
memory
– Demand paging only loads pages in response to page
faults
• Many page faults when a process first starts

– Pre-paging brings in more pages than needed at the
moment
• Improves I/O performance by reading in larger chunks

• Pre-fetch when disk is idle

• Wastes I/O bandwidth if pre-fetched pages aren’t used

• Especially bad if we eject pages in working set in order to
pre-fetch unused pages.

• Hard to get right in practice.

33

7

6

5

4

3

2

1

0

Physical

Address Space

7

6

5

3

1

0

15

14

13

12

11

10

9

8

14

10

4

2

Disk

Virtual

Memory

Page fault on

page 14, physical

memory full,

which page

should we evict?

Replacement

Policy

34

Replacement Policy

• Which page is chosen to be tossed out?
– Page removed should be the page least likely to be
references in the near future

– Most policies attempt to predict the future behaviour
on the basis of past behaviour

• Constraint: locked frames
– Kernel code

– Main kernel data structure

– I/O buffers

– Performance-critical user-pages (e.g. for DBMS)

• Frame table has a lock bit

35

Optimal Replacement policy

• Toss the page that won’t be used for the longest
time

• Impossible to implement

• Only good as a theoretic reference point:
– The closer a practical algorithm gets to optimal, the
better

• Example:
– Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

– Four frames

– How many page faults?

36

FIFO Replacement Policy

• First-in, first-out: Toss the oldest page

– Easy to implement

– Age of a page is isn’t necessarily related to
usage

• Example:

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

– Four frames

– How many page faults?

– Three frames?

37

Belady’s Anomaly

• More frames does not imply fewer page

faults

38

Least Recently Used (LRU)

• Toss the least recently used page

– Assumes that page that has not been referenced for a

long time is unlikely to be referenced in the near

future

– Will work if locality holds

– Implementation requires a time stamp to be kept for

each page, updated on every reference

– Impossible to implement efficiently

– Most practical algorithms are approximations of LRU

39

Clock Page Replacement

• Clock policy, also called second chance

– Employs a usage or reference bit in the frame

table.

– Set to one when page is used

– While scanning for a victim, reset all the

reference bits

– Toss the first page with a zero reference bit.

Assume a page

fault on page 727

42

Issue

• How do we know when a page is referenced?

• Use the valid bit in the PTE:

– When a page is mapped (valid bit set), set the

reference bit

– When resetting the reference bit, invalidate the PTE

entry

– On page fault

• Turn on valid bit in PTE

• Turn on reference bit

• We thus simulate a reference bit in software

43

Performance

• It terms of selecting the most appropriate

replacement, they rank as follows

1. Optimal

2. LRU

3. Clock

4. FIFO

– Note there are other algorithms (Working Set,

WSclock, Ageing, NFU, NRU)

– We don’t expect you to know them in this course

44

Resident Set Size

• How many frames should each process have?

– Fixed Allocation

• Gives a process a fixed number of pages within which to

execute.

• When a page fault occurs, one of the pages of that process

must be replaced.

• Achieving high utilisation is an issue.

– Some processes have high fault rate while others don’t use

their allocation.

– Variable Allocation

• Number of pages allocated to a process varies over the

lifetime of the process

45

• Variable Allocation, Global Scope

– Easiest to implement

– Adopted by many operating systems

– Operating system keeps global list of free frames

– Free frame is added to resident set of process when a

page fault occurs

– If no free frame, replaces one from any process

46

Variable Allocation, Local Scope

• Allocate number of page frames to a new process based
on
– Application type

– Program request

– Other criteria (priority)

• When a page fault occurs, select a page from among the
resident set of the process that suffers the page fault

• Re-evaluate allocation from time to time!

47

Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate.

– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

48

Cleaning Policy

• Observation
– Clean pages are much cheaper to replace than dirty pages

• Demand cleaning
– A page is written out only when it has been selected for

replacement

– High latency between the decision to replace and availability of
free frame.

• Precleaning
– Pages are written out in batches (in the background, the

pagedaemon)

– Increases likelihood of replacing clean frames

– Overlap I/O with current activity

49

Load Control (Degree of

multiprogramming)
• Determines the number of runnable processes

• Controlled by:

– Admission control

• Only let new process’s threads enter ready state if enough memory

is available

– Suspension:

• Move all threads of some process into a special suspended state

• Swap complete process image of suspended process to disk

• Trade-off

– Too many processes will lead to thrashing

– Too few will lead to to idle CPU or excessive swapping

50

Load Control Considerations

• Can use page fault frequency.

