

C	0 Re	gis	ter	S			
31	12	11			6	5	0
VPN		ASID				0	
EntryHi Register (TLB key fields)							
31	12	11	10	9	8	7	0
PFN		N	D	V	G	0	
 EntryLo Register (TLB data fields) N = Not cacheable D = Dirty = Write p G = Global (ignore in lookup) 	rotect ASID	• \ • 6 • 4	/ = val 64 TLB Access Coopro – Enti	id bit entri ed vi ocess ryHi a	es a soft or 0 re nd Ent	ware thr egisters ryLo	rough
NEW SOUTH WALES							10

Cooprocessor 0 registers on a refill exception

$\textbf{c0}.\textbf{EPC} \leftarrow \textbf{PC}$

 $\begin{array}{l} \text{c0.cause.ExcCode} \leftarrow \text{TLBL} \text{ ; if read fault} \\ \text{c0.cause.ExcCode} \leftarrow \text{TLBS} \text{ ; if write fault} \\ \text{c0.BadVaddr} \leftarrow \text{faulting address} \\ \text{c0.EntryHi.VPN} \leftarrow \text{faulting address} \\ \text{c0.status} \leftarrow \text{kernel mode, interrupts disabled.} \\ \text{c0.PC} \leftarrow 0x8000\ 0000 \end{array}$

THE UNIVERSITY OF NEW SOUTH WALES

Outline of TLB miss handling Software does: Look up PTE corresponding to the faulting address If found: load c0_EntryLo with translation load TLB using TLBWR instructions return from exception Else, page fault The TLB entry (i.e. c0_EntryLo) can be: created on the fly, or stored completely in the right format in page table more efficient

15

THE UNIVERSITY OF NEW SOUTH WALES

14

- TLB misses introduce delays of several microseconds
- Page/segment faults introduce delays of several milliseconds
- Why do it?
- Answer
 - Less physical memory required per process
 - Can fit more processes in memory
 - Improved chance of finding a runnable one
 - Principle of locality

THE UNIVERSITY OF NEW SOUTH WALES

18

Principle of Locality
An important observation comes from empirical studies of the properties of programs.

Programs tend to reuse data and instructions they have used recently.
90/10 rule

"A program spends 90% of its time in 10% of its code"

We can exploit this locality of references
An implication of locality is that we can reasonably predict what instructions and data a

reasonably predict what <u>instructions</u> and <u>data</u> a program will use in the near future based on its accesses in the recent past.

19

Page Size
Increasing page size Increases internal fragmentation reduces adaptability to working set size Decreases number of pages Reduces size of page tables Increases TLB coverage Reduces number of TLB misses Increases page fault latency Need to read more from disk before restarting process Increases swapping I/O throughput Small I/O are dominated by seek/rotation delays Optimal page size is a (work-load dependent) trade-off.
THE UNIVERSITY OF 29

Allas	512 WOIUS (40-DIL)
Honeywell/Multics	1K words (36-bit)
IBM 370/XA	4K bytes
DEC VAX	512 bytes
IBM AS/400	512 bytes
Intel Pentium	4K and 4M bytes
ARM	4K and 64K bytes
MIPS R4000	4k – 16M bytes in powers of 4
DEC Alpha	8K - 4M bytes in powers of 8
UltraSPARC	8K – 4M bytes in powers of 8
PowerPC	4K bytes + "blocks"
Intel IA-64	4K – 256M bytes in powers of 4

Disk

33

35

- Toss the page that won't be used for the longest time
- Impossible to implement •
- Only good as a theoretic reference point:
- The closer a practical algorithm gets to optimal, the better
- · Example:
 - Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 - Four frames
 - How many page faults?

THE UNIVERSITY OF NEW SOUTH WALES

Variable Allocation, Local Scope Allocate number of page frames to a new process based on Application type

- Program requestOther criteria (priority)
- When a page fault occurs, select a page from among the resident set of the process that suffers the page fault

46

· Re-evaluate allocation from time to time!

THE UNIVERSITY OF NEW SOUTH WALES

