I/O Management Intro

Chapter 5

1

I/O Devices

- There exists a large variety of I/O devices:
 - Many of them with different properties
 - They seem to require different interfaces to manipulate and manage them
 - We don't want a new interface for every device
 - Diverse, but similar interfaces leads to code duplication
- Challenge:
 - Uniform and efficient approach to I/O

2

Categories of I/O Devices (by usage)

- · Human readable
 - Used to communicate with the user
 - Printers, Video Display, Keyboard, Mouse
- · Machine readable
 - Used to communicate with electronic equipment
 - Disk and tape drives, Sensors, Controllers, Actuators
- Communication
 - Used to communicate with remote devices
 - Ethernet, Modems, Wireless

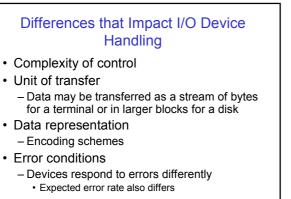
3

Differences that Impact I/O Device Handling

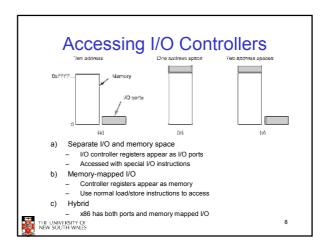
- · Data rate
 - May be differences of several orders of magnitude between the data transfer rates
 - Example: Assume 1000 cycles/byte I/O
 - Keyboard needs 10 KHz processor to keep up
 - Gigabit Ethernet needs 100 GHz processor.....

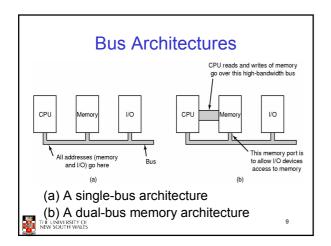
4

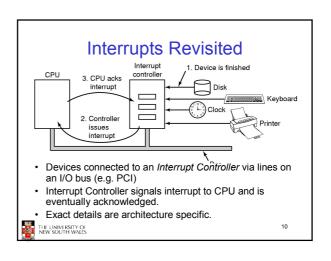
Sample Data Rates

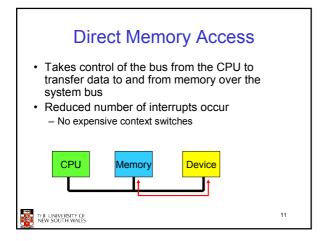

Device	Charte natio
Keyboard	10 ayasa/soc
Mouse	100 bytes/sec
88K macam	7 <3/sec
Telephone channe	6 K3/see
Duel St3N Pres	16 K:1/sec
BBBC primer	100 K.Wsec
Susmon'	400 K3/sec
Classic Einemet	1.26 MU/soc
USR (Universal Serial Rus)	1,5 M-3/600
Digital campordor	
DC dax	5 MWscc
40x C-3 : ROV	8 Mil/sec
Fast Ethernet	12.5 M3/sec
SA bus	15.7 V 3/800
FLDIE (ATA-9) disk	16,7 V.3/sec
FireWitre (FEET 1394)	50 Milysoc
XCA Vortor	60 VB/scc
SONE: OC 12 network	78 V3Vsec
SGS: Utra 2 disk	80 MIMsec
Gigapit Unomot	125 V3/sec
withorn tape	320 VilVaco
PG: bue	698 MB/800
Sun Gigabiano XB babighano	20 OR/eac

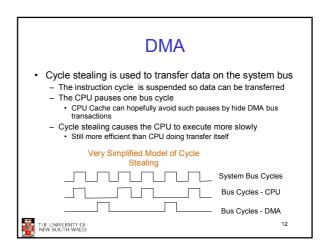
THIL UNIVERSITY OF NEW SOUTH WALES Differences that Impact I/O Device Handling

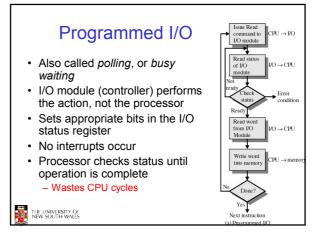

- · Application
 - Disk used to store files requires filemanagement software
 - May provide feature specific to function, e.g. nonvolatile RAM.
 - Disk used to store virtual memory pages needs special hardware and software to support it
 - Terminal used by system administrator may have a higher priority

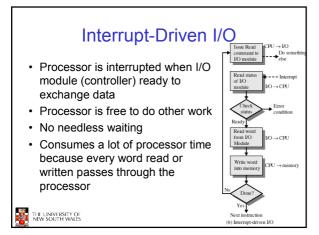


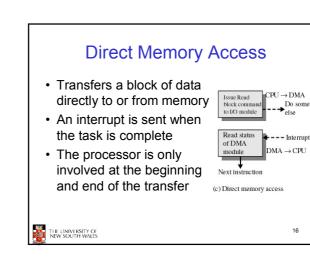

0

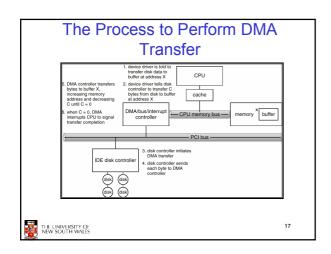


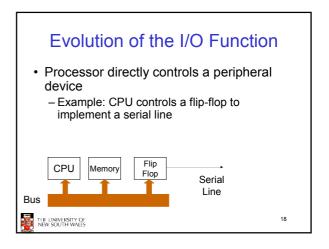

THE UNIVERSITY OF NEW SOUTH WALES






- · Commonly burst-mode is used
 - CPU uses several consecutive cycles to load entire cache line
 - DMA writes (or reads) a similar sized burst
 - Reason: More efficient (less cycles overall) to transfer a sequence of words than a word at a time.
 - No bus arbitration, read/write setup, or addressing cycles required after first transfer.
- · Number of required busy cycles can be cut by
 - Path between DMA module and I/O module that does not include the system bus




13

