
1

Disk I/O Management

Chapter 5

2

Disk Management

• Management and ordering of disk access

requests is important:

– Huge speed gap between memory and disk

– Disk throughput is extremely sensitive to

• Request order ⇒ Disk Scheduling

• Placement of data on the disk ⇒ file system

design

– Disk scheduler must be aware of disk

geometry

3

Disk Geometry

• Physical geometry of a disk with two zones
– Outer tracks can store more sectors than inner without exceed
max information density

• A possible virtual geometry for this disk

4

Evolution of Disk Hardware

Disk parameters for the original IBM PC floppy disk and

a Western Digital WD 18300 hard disk

5

Things to Note

• Average seek time is approx 12 times

better

• Rotation time is 24 times faster

• Transfer time is 1300 times faster

– Most of this gain is due to increase in density

• Represents a gradual engineering

improvement

6

Storage Capacity is 50000

times greater

7

Disk Performance
• Disk is a moving device ⇒ must be positioned correctly

for I/O

• Execution of a disk operation involves

– Wait time: the process waits to be granted device access

• Wait for device: time the request spend in wait queue

• Wait for channel: time until a shared I/O channel is available

– Access time: time hardware need to position the head

• Seek time: position the head at the desire track

• Rotational delay (latency): spin disk to the desired sector

– Transfer time: sectors to be read/written rotate below head

8

Estimating Access Time

9

A Timing Comparison

11 8 67

10

Disk Comparative Performance

Average Access Time

0

50

100

150

200

250

Disk

M
il
li
s
e
c Transfer

Rot. Del.

Seek

Transfer 22 0.017

Rot. Del. 100 4.165

Seek 77 6.9

1 2

11

Disk Performance is Entirely Dominated

by Seek and Rotational Delays

• Will only get worse as

capacity increases much

faster than increase in

seek time and rotation

speed

– Note it has been easier

to spin the disk faster

than improve seek time

• Operating System

should minimise

mechanical delays as

much as possible

Average Access Time Scaled to 100%

0%

20%

40%

60%

80%

100%

Disk

Transfer

Rot. Del.

Seek

Transfer 22 0.017

Rot. Del. 100 4.165

Seek 77 6.9

1 2

12

Low-level Disk Formatting

A disk sector

13

Low-level Disk Formatting

• When reading
sequential blocks,
the seek time can
result in missing
block 0 in the next
track

• Disk can be
formatted using a
cylinder skew to
avoid this

14

Low-Level Disk Formatting

• Issue: After reading one sector, the time it takes to
transfer the data to the OS and receive the next request
results in missing reading the next sector

• To overcome this, we can use interleaving
a) No interleaving

b) Single interleaving

c) Double interleaving

15

Low-Level Disk Formatting

• Modern drives overcome interleaving type

issues by simply reading the entire track

(or part thereof) into the on-disk controller

and caching it.

16

Disk Arm Scheduling Algorithms

• Time required to read or write a disk
block determined by 3 factors

1. Seek time

2. Rotational delay

3. Actual transfer time

• Seek time dominates

• For a single disk, there will be a
number of I/O requests

– Processing them in random order leads
to worst possible performance

17

First-in, First-out (FIFO)
• Process requests as they come

• Fair (no starvation)

• Good for a few processes with clustered requests

• Deteriorates to random if there are many processes

18

Shortest Seek Time First
• Select request that minimises the seek time

• Generally performs much better than FIFO

• May lead to starvation

19

Elevator Algorithm (SCAN)
• Move head in one direction

– Services requests in track order until it reaches the last track,

then reverses direction

• Better than FIFO, usually worse than SSTF

• Avoids starvation

• Makes poor use of sequential reads (on down-scan)

20

Modified Elevator (Circular SCAN, C-SCAN)

• Like elevator, but reads sectors in only one direction

– When reaching last track, go back to first track non-stop

• Better locality on sequential reads

• Better use of read ahead cache on controller

• Reduces max delay to read a particular sector

21

Error Handling

a) A disk track with a bad sector

b) Substituting a spare for the bad sector

c) Shifting all the sectors to bypass the bad one

• Bad blocks are usually handled transparently by the

on-disk controller

22

Implementing Stable Storage

• Use two disks to implement stable storage
– Problem is when a write (update) corrupts old version,
without completing write of new version

– Solution: Write to one disk first, then write to second after
completion of first

