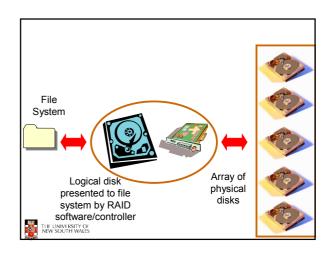
RAID Chapter 5

RAID

- · Redundant Array of Inexpensive Disks
 - Industry tends to use "Independent Disks" ☺
- Idea:
 - Use multiple disks to parallelise Disk I/O for better performance
 - Use multiple redundant disks for better availability
- Alternative to a Single Large Expensive Disk (SLED)



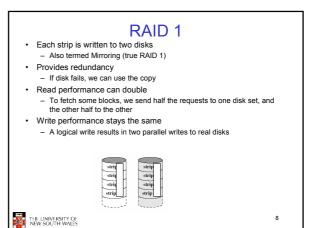
2

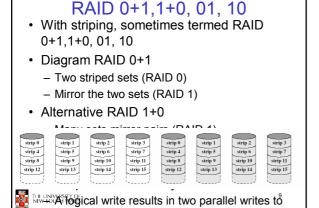
RAID Level

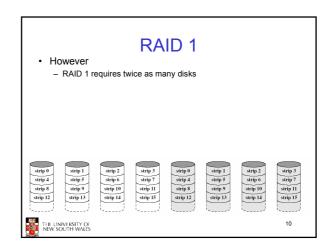
- Various configurations of multiple disks are termed a RAID Level
 - Note the Level, does not necessarily imply that one configuration is above or below another.
- We will look at RAID Levels 0 to 5
- All instances of RAID present a single logical disk to the file system.

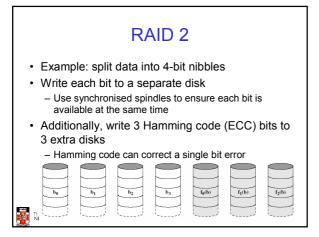
RAID 0

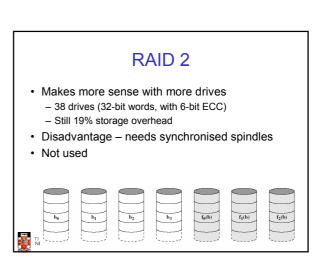
- · Logical Disk divided into strip(e)s
 - Stripe = a fixed number of sectors
 - First strip written to disk 0
 - Consecutive strips written to different disk in the array in round-robin fashion
- · Splits I/O workload across several disks
 - Best with many independent request streams
 - Avoids hotspots on a single disk
- Increases bandwidth available to/from the logical disk.

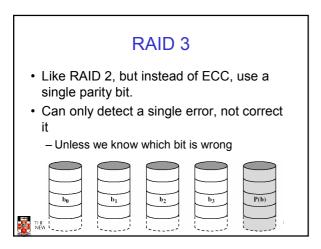

6

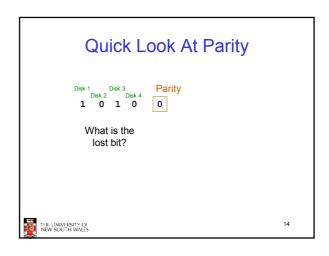


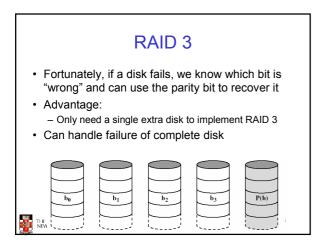

- · Not really true RAID
 - No redundancy
- · RAID 0 is less reliable than a SLED
 - Example: Assume MTBF of 10000 hours
 - MTBF of the array is MTBF divided by the number of disks
 - · A 4 disk array would have an MTBF of 2500 hours

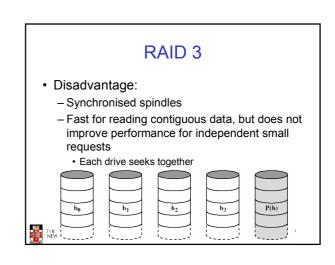


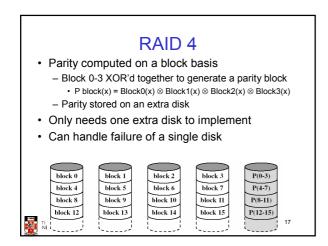

7

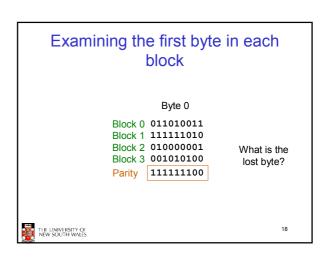


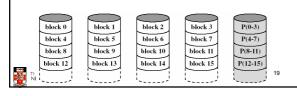


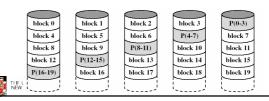











RAID 4

- · Does not require synchronised spindles
- · Can parallelised many independent request
- · Small updates are a problem
 - Requires two reads (old block + parity) and two writes (new block + parity) to update a disk block
 - Parity disk may become a bottleneck

RAID 5

- · Like RAID 4, except we distribute the parity on all disks
- · Avoids parity disk updates becoming a bottleneck
- · Update performance still less than a single disk
- · Reconstruction after failure is tricky

Summary

- RAID 0 provides performance improvements, but no availability improvement
- RAID 1 (01,10) provides performance and availability improvements but expensive to implement (double the number of disks)
- RAID 5 is cheap (single extra disk), but has poor write update performance
- · Others (2 & 3) are not used

21

HP AutoRAID

- Active data used RAID 1
 - Good read and write performance
- Inactive data uses RAID 5
 - Rarely accessed, RAID 5 provides low storage overheads
- Adaptive Storage
 - Empty disk uses entirely RAID 1, as disk fills, data incrementally converted to RAID 5 to increase available capacity
 - Data updates convert data back to RAID 1
- On-line array expansion
 - New disks can be added and system rebalances
 - New Disks can be an arbitrary size
- · Active Hot Spare
 - The hot spare is used for mirroring until needed.

22

HP AutoRAID

 If you interested in the details see
 John Wilkes, Richard Golding, Carl Staelin and Tim Sullivan. "The HP AutoRAID hierarchical storage system", ACM Trans. Comput. Syst., Vol 14(1), 1996

23