
Deadlocks

Chapter 6

6.1. Resources

1

6.1. Resources

6.2. Introduction to deadlocks

6.3. The ostrich algorithm

6.4. Deadlock detection and recovery

6.5. Deadlock avoidance

6.6. Deadlock prevention

6.7. Other issues

Learning Outcomes

• Understand what deadlock is and how it

can occur when giving mutually exclusive

access to multiple resources.

• Understand several approaches to

2

• Understand several approaches to

mitigating the issue of deadlock in

operating systems.

– Including deadlock detection and recovery,

deadlock avoidance, and deadlock

prevention.

Resources

• Examples of computer resources

– printers

– tape drives

– Tables in a database

3

• Processes need access to resources in reasonable

order

• Suppose a process holds resource A and requests

resource B

– at same time another process holds B and requests A

– both are blocked and remain so

Resources

• Deadlocks occur when/

– processes are granted exclusive access to devices

– we refer to these devices generally as resources

4

• Preemptable resources

– can be taken away from a process with no ill effects

• Nonpreemptable resources

– will cause the process to fail if taken away

Resources

• Sequence of events required to use a resource

1. request the resource

2. use the resource

3. release the resource

5

3. release the resource

• Must wait if request is denied

– requesting process may be blocked

– may fail with error code

Example Resource usage
semaphore res_1, res_2;

void proc_A() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

semaphore res_1, res_2;

void proc_A() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

6

up(&res_1);

}

void proc_B() {

down(&res_1);

down(&res_2);

use_both_res();

up(&res_2);

up(&res_1);

}

up(&res_1);

}

void proc_B() {

down(&res_2);

down(&res_1);

use_both_res();

up(&res_1);

up(&res_2);

}

Introduction to Deadlocks

• Formal definition :
A set of processes is deadlocked if each process in the set is
waiting for an event that only another process in the set can
cause

7

• Usually the event is release of a currently held
resource

• None of the processes can /
– run

– release resources

– be awakened

Four Conditions for Deadlock

1. Mutual exclusion condition
• each resource assigned to 1 process or is available

2. Hold and wait condition
• process holding resources can request additional

3. No preemption condition

8

3. No preemption condition
• previously granted resources cannot forcibly taken

away

4. Circular wait condition
• must be a circular chain of 2 or more processes

• each is waiting for resource held by next member of
the chain

Deadlock Modeling

• Modeled with directed graphs

9

– resource R assigned to process A

– process B is requesting/waiting for resource S

– process C and D are in deadlock over resources T
and U

Deadlock

Strategies for dealing with Deadlocks

1. just ignore the problem altogether

2. detection and recovery

3. dynamic avoidance

10

3. dynamic avoidance

• careful resource allocation

4. prevention

• negating one of the four necessary conditions

A B C

Deadlock Modeling

11How deadlock occurs

Deadlock Modeling

12How deadlock can be avoided

(o) (p) (q)

Approach 1: The Ostrich Algorithm

• Pretend there is no problem

• Reasonable if
– deadlocks occur very rarely

– cost of prevention is high
• Example of “cost”, only one process runs at a time

13

• Example of “cost”, only one process runs at a time

• UNIX and Windows takes this approach for
some of the more complex resources to
manage

• It’s a trade off between
– Convenience (engineering approach)

– Correctness (mathematical approach)

Approach 2: Detection and

Recovery

• Need a method to determine if a system is

deadlocked.

• Assuming deadlocked is detected, we

need a method of recovery to restore

14

need a method of recovery to restore

progress to the system.

Approach 2

Detection with One Resource of Each Type

15

• Note the resource ownership and requests

• A cycle can be found within the graph, denoting
deadlock

What about resources with

multiple units?
• We need an approach for dealing with

resources that consist of more than a

single unit.

16

Detection with Multiple Resources of Each

Type

17

Data structures needed by deadlock detection
algorithm

Note the following invariant

Sum of current resource allocation +

resources available = resources that exist

18

jj

n

i

ij EAC =+∑
=1

Detection with Multiple Resources of Each

Type

19

An example for the deadlock detection algorithm

Detection Algorithm

1. Look for an unmarked process Pi, for

which the i-th row of R is less than or

equal to A

2. If found, add the i-th row of C to A, and

20

2. If found, add the i-th row of C to A, and

mark Pi. Go to step 1

3. If no such process exists, terminate.

Remaining processes are deadlocked

Example Deadlock Detection

)1324(=E)0012(=A

21

)1324(=E)0012(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)0012(=A

22

)1324(=E)0012(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)0222(=A

23

)1324(=E)0222(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)0222(=A

24

)1324(=E)0222(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)1224(=A

25

)1324(=E)1224(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)1224(=A

26

)1324(=E)1224(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)1224(=A

27

)1324(=E)1224(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

)1324(=E)1324(=A

28

)1324(=E)1324(=A

















=

0210

1002

0100

C
















=

0012

0101

1002

R

Example Deadlock Detection

• Algorithm terminates with no unmarked

processes

– We have no dead lock

29

Example 2: Deadlock Detection

• Suppose, P3 needs a CD-ROM as well as

2 Tapes and a Plotter

)1324(=E)0012(=A

30

)1324(=E)0012(=A

















=

0210

1002

0100

C
















=

1012

0101

1002

R

Recovery from Deadlock

• Recovery through preemption

– take a resource from some other process

– depends on nature of the resource

31

• Recovery through rollback

– checkpoint a process periodically

– use this saved state

– restart the process if it is found deadlocked

Recovery from Deadlock

• Recovery through killing processes

– crudest but simplest way to break a deadlock

– kill one of the processes in the deadlock cycle

32

– kill one of the processes in the deadlock cycle

– the other processes get its resources

– choose process that can be rerun from the

beginning

Approach 3

Deadlock Avoidance

• Instead of detecting deadlock, can we

simply avoid it?

– YES, but only if enough information is

available in advance.

33

available in advance.

• Maximum number of each resource required

Deadlock Avoidance
Resource Trajectories

34

Two process resource trajectories

Safe and Unsafe States

• A state is safe if

– The system is not deadlocked

– There exists a scheduling order that results in

every process running to completion, even if

35

every process running to completion, even if

they all request their maximum resources

immediately

Safe and Unsafe States
Note: We have 10 units

of the resource

36

Demonstration that the state in (a) is safe

(a) (b) (c) (d) (e)

Safe and Unsafe States
A requests one extra unit resulting in (b)

37

Demonstration that the state in b is not safe

(a) (b) (c) (d)

Safe and Unsafe State

• Unsafe states are not necessarily deadlocked

– With a lucky sequence, all process may complete

– However, we cannot guarantee that they will

complete (not deadlock)

38

• Safe states guarantee we will eventually

complete all processes

• Deadlock avoidance algorithm

– Only grant requests that result in safe states

Bankers Algorithm
• Modelled on a Banker with Customers

– The banker has a limited amount of money to loan customers

• Limited number of resources

– Each customer can borrow money up to the customer’s credit

limit

• Maximum number of resources required

• Basic Idea

39

• Basic Idea

– Keep the bank in a safe state

• So all customers are happy even if they all request to borrow up to

their credit limit at the same time.

– Customers wishing to borrow such that the bank would enter an

unsafe state must wait until somebody else repays their loan

such that the the transaction becomes safe.

The Banker's Algorithm for a Single Resource

40

• Three resource allocation states
– safe

– safe

– unsafe

(a) (b) (c)

Banker's Algorithm for Multiple Resources

41

Example of banker's algorithm with multiple
resources

Should we allow a request by B & E for 1 scanner to
succeed??

Banker's Algorithm for Multiple Resources

42

Example of banker's algorithm with multiple
resources

Should we allow a request by B & E for 1 scanner to
succeed??

Bankers Algorithm is not

commonly used in practice
• It is difficult (sometime impossible) to know

in advance

– the resources a process will require

– the number of processes in a dynamic system

43

– the number of processes in a dynamic system

Approach 4: Deadlock Prevention

• Resource allocation rules prevent

deadlock by prevent one of the four

conditions required for deadlock from

occurring

44

occurring

– Mutual exclusion

– Hold and wait

– No preemption

– Circular Wait

Approach 4

Deadlock Prevention
Attacking the Mutual Exclusion Condition

• Not feasible in general

– Some devices/resource are intrinsically not

shareable.

45

Attacking the Hold and Wait

Condition
• Require processes to request resources before starting

– a process never has to wait for what it needs

• Issues
– may not know required resources at start of run

• ⇒ not always possible

– also ties up resources other processes could be using

46

– also ties up resources other processes could be using

• Variations:
– process must give up all resources if it would block hold a resource

– then request all immediately needed

– prone to starvation

Attacking the No Preemption Condition

• This is not a viable option

• Consider a process given the printer

– halfway through its job

47

– halfway through its job

– now forcibly take away printer

– !!??

Attacking the Circular Wait Condition

48

• Numerically ordered resources

(a) (b)

Attacking the Circular Wait

Condition
• The displayed deadlock
cannot happen
– If A requires 1, it must
acquire it before
acquiring 2

1 2

49

acquiring 2

– Note: If B has 1, all
higher numbered
resources must be free or
held by processes who
doesn’t need 1

• Resources ordering is a
common technique in
practice!!!!!

A B

Summary of approaches to

deadlock prevention
Condition

• Mutual Exclusion

• Hold and Wait

Approach

• Not feasible

• Request resources

initially

50

• No Preemption

• Circular Wait

initially

• Take resources away

• Order resources

Nonresource Deadlocks

• Possible for two processes to deadlock

– each is waiting for the other to do some

task

• Can happen with semaphores

51

• Can happen with semaphores

– each process required to do a down() on

two semaphores (mutex and another)

– if done in wrong order, deadlock results

Starvation
• Starvation is where the overall system makes progress, but

one or more processes never make progress.

– Example: An algorithm to allocate a resource may be to give to
shortest job first

– Works great for multiple short jobs in a system

52

– Works great for multiple short jobs in a system

– May cause long job to be postponed indefinitely, even though not
blocked

• Solution:
– First-come, first-serve policy

