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UNIX File Management

• We will focus on two types of files

– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others
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• And mostly ignore the others

– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links



UNIX index node (inode)

• Each file is represented by an Inode on disk

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number (within a partition)
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• Each inode has a unique number (within a partition)

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

– Mapping can be many-to-one

• Hard links



Inode Contents

• Mode

– Type 

• Regular file or directory

– Access mode

• rwxrwxrwx

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
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• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect



Inode Contents

• atime

– Time of last access

• ctime

– Time when file was 

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
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– Time when file was 

created

• mtime

– Time when file was 

last modified

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect



Inode Contents
• Size

– Size of the file in bytes

• Block count

– Number of disk blocks used by 
the file.

• Note that number of blocks can 
be much less than expected 
given the file size

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
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given the file size

– Files can be sparsely 
populated

• E.g. write(f,“hello”); lseek(f, 
1000000); write(f, “world”);

• Only needs to store the start 
an end of file, not all the 
empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect



Inode Contents
• Direct Blocks

– Block numbers of first 10 

blocks in the file

– Most files are small

• We can find blocks of file 

directly from the inode

mode
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gid

atime

ctime
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block count

reference count
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Problem

• How do we store files greater than 10 

blocks in size?

– Adding significantly more direct entries in the 

inode results in many unused entries most of 
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inode results in many unused entries most of 

the time.



Inode Contents
• Single Indirect Block

– Block number of a block 

containing block numbers

• In this case 8

mode
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block count

reference count
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Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– In previous example
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– In previous example

• 10 direct + 8 indirect = 18 block file

– A more realistic example

• Assume 1Kbyte block size, 4 byte block numbers

• 10 * 1K + 1K/4 * 1K = 266 Kbytes

• For large majority of files (< 266 K), given the 

inode, only one or two further accesses required 

to read any block in file.



Inode Contents
• Double Indirect Block

– Block number of a block 

containing block numbers of 

blocks containing block 

numbers

• Triple Indirect

– Block number of a block 

containing block numbers of 

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
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containing block numbers of 

blocks containing block 

numbers of blocks containing 

block numbers ☺

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect



Unix Inode Block Addressing 

Scheme
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Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256 
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– Single Indirect Blocks = 256 

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

– 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB



Where is the data block number 

stored?
• Assume 4K blocks, 4 byte block numbers, 

12 direct blocks

• A 1 byte file produced by

lseek(fd, 1048576) /* 1 megabyte */lseek(fd, 1048576) /* 1 megabyte */

write(fd, “x”, 1)

• What if we add

lseek(fd, 2097152) /* 2 megabyte */

write(fd, “x”, 1)
14



Space for Worked Example
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Some Best and Worst Case 

Access Patterns
Assume Inode already in memory

• To read 1 byte

– Best: 

• 1 access via direct block

– Worst: 
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• 4 accesses via the triple indirect block

• To write 1 byte

– Best: 

• 1 write via direct block (with no previous content)

– Worst: 

• 4 reads (to get previous contents of block via triple indirect) + 1 write 

(to write modified block back)



Worst Case Access Patterns with 

Unallocated Indirect Blocks
• Worst to write 1 byte

– 4 writes (3 indirect blocks; 1 data)

– 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data) 

– 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1; 

write 1 data)
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– 3 reads, 2 writes  (read 2, read-write 1; write 1 data)

• Worst to read 1 byte

– If reading writes a zero-filled block on disk

• Worst case is same as write 1 byte

– If not, worst-case depends on how deep is the current indirect 

block tree.



Inode Summary

• The inode contains the on disk data associated with a 
file
– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random 

18

– Larger files require progressively more disk accesses for random 
access

• Sequential access is still efficient

– Can support really large files via increasing levels of indirection



Where/How are Inodes Stored

• System V Disk Layout (s5fs)

Boot

Block

Super

Block

Inode

Array
Data Blocks
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• System V Disk Layout (s5fs)
– Boot Block 

• contain code to bootstrap the OS

– Super Block
• Contains attributes of the file system itself

– e.g. size, number of inodes, start block of inode array, start of 
data block area,  free inode list, free data block list

– Inode Array

– Data blocks



Some problems with s5fs

• Inodes at start of disk; data blocks end
– Long seek times

• Must read inode before reading data blocks

• Only one superblock
– Corrupt the superblock and entire file system is lost
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– Corrupt the superblock and entire file system is lost

• Block allocation was suboptimal
– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list 
resulting the random allocation

• Inodes also allocated randomly
– Directory listing resulted in random inode access 
patterns



Berkeley Fast Filesystem (FFS)

• Historically followed s5fs

– Addressed many limitations with s5fs

– Linux mostly similar, so we will focus on Linux
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The Linux Ext2 File System
• Second Extended Filesystem

– Evolved from Minix filesystem (via “Extended Filesystem”)

• Features

– Block size (1024, 2048, and 4096) configured at FS creation

– Pre-allocated inodes (max number also configured at FS 

creation)

– Block groups to increase locality of reference (from BSD 
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– Block groups to increase locality of reference (from BSD 

FFS)

– Symbolic links < 60 characters stored within inode

• Main Problem: unclean unmount �e2fsck

– Ext3fs keeps a journal of (meta-data) updates

– Journal is a file where updated are logged

– Compatible with ext2fs



Layout of an Ext2 Partition

Boot

Block

Block Group

0
….

Block Group

n
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• Disk divided into one or more partitions

• Partition:

– Reserved boot block,

– Collection of equally sized block groups

– All block groups have the same structure



Layout of a Block Group

• Replicated super block

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

1 blk n blks 1 blk 1 blk m blks k blks
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• Replicated super block
– For e2fsck

• Group descriptors

• Bitmaps identify used inodes/blocks

• All block groups have the same number of data blocks

• Advantages of this structure:
– Replication simplifies recovery

– Proximity of inode tables and data blocks (reduces seek time)



Superblocks

• Size of the file system, block size and similar 
parameters

• Overall free inode and block counters

• Data indicating whether file system check is 
needed:
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needed:
– Uncleanly unmounted

– Inconsistency

– Certain number of mounts since last check

– Certain time expired since last check

• Replicated to provide redundancy to aid 
recoverability 



Group Descriptors

• Location of the bitmaps

• Counter for free blocks and inodes in this 

group

• Number of directories in the group
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• Number of directories in the group



Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching 

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)
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– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Aim to store files within a directory in the same group



Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching 

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)
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– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Aim to store files within a directory in the same group
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Thus farP

• Inodes representing files laid out on disk.

• Inodes are referred to by number!!!

– How do users name files? By number?

– Try ls –i to see how useful inode numbers 
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– Try ls –i to see how useful inode numbers 

areP.



Ext2fs Directories

• Directories are files of a special type
– Consider it a file of special format, managed by the kernel, that 

uses most of the same machinery to implement it 

inode rec_len name_len type name…
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• Inodes, etcP

• Directories translate names to inode numbers

• Directory entries are of variable length

• Entries can be deleted in place
– inode = 0

– Add to length of previous entry

– use null terminated strings for names



Ext2fs Directories

• “f1” = inode 7

• “file2” = inode 43

• “f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

Inode No

Rec Length

Name Length

Name

32

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

0



Ext2fs Directories

• Note that inodes 

can have more 

than one name

– Called a Hard Link

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name
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– Called a Hard Link

– Inode (file) 7 has 

three names

• “f1” = inode 7

• “file2” = inode 7

• “f3” = inode 7

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

0



Inode Contents
• We can have many name for the same inode.

• When we delete a file by name, i.e. remove 

the directory entry (link), how does the file 

system know when to delete the underlying 

inode?

– Keep a reference count in the inode

• Adding a name (directory entry) increments the 

count

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
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count

• Removing a name decrements the count

• If the reference count == 0, then we have no 

names for the inode (it is unreachable), we can 

delete the inode (underlying file or directory)

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect



Ext2fs Directories

• Deleting a filename

– rm file2

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name

35
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7
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0



Ext2fs Directories

• Deleting a filename

– rm file2

• Adjust the record 

length to skip to next 

7

32

2

‘f’ ‘1’ 0 0

Inode No

Rec Length

Name Length

Name

36

length to skip to next 

valid entry

7

12

2

‘f’ ‘3’ 0 0

0



Kernel File-related Data 

Structures and Interfaces
• We have reviewed how files and 

directories are stored on disk

• We know the UNIX file system-call 

interface
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interface
fd = open(“file”,P), 

close(fd), 

read(fd,P), write(fd,P), lseek(fd,P),P..

• What is in between?



What do we need to keep track 

of?
• File descriptors

– Each open file has a file descriptor

– Read/Write/lseek/P. use them to specify 
which file to operate on.

38

• File pointer

– Determines where in the file the next read or 
write is performed

• Mode

– Was the file opened read-only, etcP.  



An Option?

• Use inode numbers as file descriptors and 

add a file pointer to the inode

• Problems
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• Problems

– What happens when we concurrently open 

the same file twice?

• We should get two separate file descriptors and file 

pointersP.



An Option?

• Single global open 

file array

– fd is an index into 

the array
fp

i-ptr

fd

inode

Array of Inodes 

in RAM
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the array

– Entries contain file 

pointer and pointer 

to an inode

i-ptr inode



Issues

• File descriptor 1 is 

stdout

– Stdout is 

• console for some 

fp

i-ptr

fd

inode
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• console for some 

processes

• A file for others

• Entry 1 needs to be 

different per 

process!

i-ptr inode



Per-process File Descriptor 

Array
• Each process has 

its own open file 

array

– Contains fp, i-ptr etc.

P1 fd

inode

fp

i-ptr

42

– Contains fp, i-ptr etc.

– Fd 1 can be any 

inode for each 

process (console, 

log file).

inodei-ptr

fp

i-ptr

P2 fd

inode



Issue

• Fork
– Fork defines that the child 

shares the file pointer with 
the parent

• Dup2
– Also defines the file 

P1 fd

inode

fp

i-ptr
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– Also defines the file 
descriptors share the file 
pointer

• With per-process table, we 
can only have independent 
file pointers
– Even when accessing the 

same file

inodei-ptr

fp

i-ptr

P2 fd

inode



Per-Process fd table with global 

open file table
• Per-process file descriptor 

array

– Contains pointers to open 
file table entry

• Open file table array

– Contain entries with a fp 
and pointer to an inode.

P1 fd

inode

f-ptr fp

i-ptr

44

and pointer to an inode.

• Provides

– Shared file pointers if 
required

– Independent file pointers 
if required

• Example:

– All three fds refer to the 
same file, two share a file 
pointer, one has an 
independent file pointer

inode

f-ptr

f-ptr
P2 fd

inode

i-ptr

fp

i-ptr

Per-process 

File Descriptor 

Tables
Open File Table



Per-Process fd table with global 

open file table
• Used by Linux and 

most other Unix 

operating systems

P1 fd

inode

f-ptr fp

i-ptr
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inode

f-ptr

f-ptr
P2 fd

inode

i-ptr

fp

i-ptr

Per-process 

File Descriptor 

Tables
Open File Table



Older Systems only had a single 

file system
• They had file system specific open, close, read, 

write, P calls.

• The open file table pointed to an in-memory 

representation of the inode
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representation of the inode

– inode format was specific to the file system used 

(s5fs, Berkley FFS, etc)

• However, modern systems need to support 

many file system types

– ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs 



Supporting Multiple File 

Systems
• Alternatives

– Change the file system code to understand 
different file system types
• Prone to code bloat, complex, non-solution

– Provide a framework that separates file 
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– Provide a framework that separates file 
system independent and file system 
dependent code.
• Allows different file systems to be “plugged in”

• File descriptor, open file table and other parts of 
the kernel can be independent of underlying file 
system



VFS 

architecture

48

architecture



Virtual File System (VFS)

• Provides single system call interface for many file 

systems

– E.g., UFS, Ext2, XFS, DOS, ISO9660,P

• Transparent handling of network file systems

– E.g., NFS, AFS, CODA
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– E.g., NFS, AFS, CODA

• File-based interface to arbitrary device drivers (/dev)

• File-based interface to kernel data structures (/proc)

• Provides an indirection layer for system calls

– File operation table set up at file open time

– Points to actual handling code for particular type

– Further file operations redirected to those functions



The file system independent code 

deals with vfs and vnodes

P1 fd

vnode

f-ptr fp

v-ptr
inode

50

vnode

f-ptr

f-ptrP2 fd

v-ptr

fp

v-ptr

Per-process 

File Descriptor 

Tables Open File Table

inode

File system 

dependent 

code



VFS Interface
• Reference

– S.R. Kleiman., "Vnodes: An Architecture for Multiple File System 
Types in Sun Unix," USENIX Association: Summer Conference 
Proceedings, Atlanta, 1986 

– Linux and OS/161 differ slightly, but the principles are the same

• Two major data types
– vfs

• Represents all file system types
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• Represents all file system types

• Contains pointers to functions to manipulate each file system as a 
whole (e.g. mount, unmount)

– Form a standard interface to the file system

– vnode

• Represents a file (inode) in the underlying filesystem

• Points to the real inode

• Contains pointers to functions to manipulate files/inodes (e.g. open, 
close, read, write,P)



A look at OS/161’s VFS 

The OS161’s file system type

Represents interface to a mounted filesystem

struct fs {

int           (*fs_sync)(struct fs *);

const char   *(*fs_getvolname)(struct fs *);

struct vnode *(*fs_getroot)(struct fs *);

Force the 

filesystem to 

flush its content 

to disk

Retrieve the 

volume name

Retrieve the vnode 
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struct vnode *(*fs_getroot)(struct fs *);

int           (*fs_unmount)(struct fs *);

void *fs_data;

};

Retrieve the vnode 

associated with the 

root of the 

filesystem

Unmount the filesystem

Note: mount called via 

function ptr passed to 
vfs_mount

Private file system 

specific data



Vnode

struct vnode {

int vn_refcount; 

int vn_opencount;

struct lock *vn_countlock;      

Count the 

number of 

“references” 

to this vnode

Number of 

times vnode 

is currently 

open

Lock for mutual 

exclusive 

access to 

counts
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struct lock *vn_countlock;      

struct fs *vn_fs; 

void *vn_data;                  

const struct vnode_ops *vn_ops;

};

Pointer to FS 

containing 

the vnode

Pointer to FS 

specific 

vnode data 

(e.g. inode)

Array of pointers 

to functions 

operating on 

vnodes



Access Vnodes via Vnode Operations

P1 fd

vnode

f-ptr fp

v-ptr
inode

54

vnode

f-ptr

f-ptrP2 fd

v-ptr

fp

v-ptr

Open File Table

inode

Vnode Ops

Ext2fs_read

Ext2fs_write



Vnode Ops
struct vnode_ops {

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_open)(struct vnode *object, int flags_from_open);
int (*vop_close)(struct vnode *object);
int (*vop_reclaim)(struct vnode *vnode);

int (*vop_read)(struct vnode *file, struct uio *uio);
int (*vop_readlink)(struct vnode *link, struct uio *uio);
int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);
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int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);
int (*vop_write)(struct vnode *file, struct uio *uio);
int (*vop_ioctl)(struct vnode *object, int op, userptr_t data);
int (*vop_stat)(struct vnode *object, struct stat *statbuf);
int (*vop_gettype)(struct vnode *object, int *result);
int (*vop_tryseek)(struct vnode *object, off_t pos);
int (*vop_fsync)(struct vnode *object);
int (*vop_mmap)(struct vnode *file /* add stuff */);
int (*vop_truncate)(struct vnode *file, off_t len);
int (*vop_namefile)(struct vnode *file, struct uio *uio);



Vnode Ops
int (*vop_creat)(struct vnode *dir, 

const char *name, int excl,
struct vnode **result);

int (*vop_symlink)(struct vnode *dir, 
const char *contents, const char *name);

int (*vop_mkdir)(struct vnode *parentdir, 
const char *name);

int (*vop_link)(struct vnode *dir, 
const char *name, struct vnode *file);

int (*vop_remove)(struct vnode *dir, 
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int (*vop_remove)(struct vnode *dir, 
const char *name);

int (*vop_rmdir)(struct vnode *dir,
const char *name);

int (*vop_rename)(struct vnode *vn1, const char *name1, 
struct vnode *vn2, const char *name2);

int (*vop_lookup)(struct vnode *dir, 
char *pathname, struct vnode **result);

int (*vop_lookparent)(struct vnode *dir,
char *pathname, struct vnode **result,
char *buf, size_t len);

};



Vnode Ops
• Note that most operation are on vnodes. How do 

we operate on file names?

– Higher level API on names that uses the internal 

VOP_* functions
int vfs_open(char *path, int openflags, struct vnode **ret);

void vfs_close(struct vnode *vn);
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void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int vfs_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove(char *path);

int vfs_rmdir(char *path);

int vfs_rename(char *oldpath, char *newpath);

int vfs_chdir(char *path);

int vfs_getcwd(struct uio *buf);



Example: OS/161 emufs vnode 

ops 
/*

* Function table for emufs 
files.

*/

static const struct vnode_ops 
emufs_fileops = {

VOP_MAGIC, /* mark this a 
valid vnode ops table */

emufs_file_gettype,

emufs_tryseek,

emufs_fsync,

UNIMP,   /* mmap */

emufs_truncate,

NOTDIR,  /* namefile */
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valid vnode ops table */

emufs_open,

emufs_close,

emufs_reclaim,

emufs_read,

NOTDIR,  /* readlink */

NOTDIR,  /* getdirentry */

emufs_write,

emufs_ioctl,

emufs_stat,

NOTDIR,  /* creat */

NOTDIR,  /* symlink */

NOTDIR,  /* mkdir */

NOTDIR,  /* link */

NOTDIR,  /* remove */

NOTDIR,  /* rmdir */

NOTDIR,  /* rename */

NOTDIR,  /* lookup */

NOTDIR,  /* lookparent */

};



Some assignment points

• gcc and literal strings

– “con:”

• tryseek()

• stat()• stat()

• uio

• copyinstr()

• curthread

– curthread->t_vmspace
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Buffer

Cache
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Cache



Buffer

• Buffer:

– Temporary storage used when transferring 

data between two entities 

• Especially when the entities work at different rates
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• Especially when the entities work at different rates

• Or when the unit of transfer is incompatible

• Example: between application program and disk



Buffering Disk Blocks
• Allow applications to work with 

arbitrarily sized region of a file

– However, apps can still 

optimise for a particular block 

size

Buffers 

in Kernel 

RAM

Application 

Program

Transfer of 

arbitrarily 
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Buffering Disk Blocks
• Writes can return immediately 

after copying to kernel buffer

– Avoids waiting until write to 

disk is complete

– Write is scheduled in the 

background

Buffers 

in Kernel 

RAM

Application 

Program

Transfer of 

arbitrarily 
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Buffering Disk Blocks
• Can implement read-ahead by 

pre-loading next block on disk 

into kernel buffer

– Avoids having to wait until 

next read is issued

Buffers 
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Cache

• Cache:

– Fast storage used to temporarily hold data to 

speed up repeated access to the data

• Example: Main memory can cache disk blocks
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• Example: Main memory can cache disk blocks



Caching Disk Blocks
• On access

– Before loading block from disk, 

check if it is in cache first

• Avoids disk accesses

• Can optimise for repeated access 

for single or several processes 
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Buffering and caching are 

related
• Data is read into buffer; extra cache copy 

would be wasteful

• After use, block should be put in a cache

• Future access may hit cached copy 
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• Future access may hit cached copy 

• Cache utilises unused kernel memory 

space; may have to shrink



Unix Buffer Cache

On read
– Hash the 
device#, block#

– Check if match in 
buffer cache
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buffer cache

– Yes, simply use 
in-memory copy

– No, follow the 
collision chain

– If not found, we 
load block from 
disk into cache



Replacement

• What happens when the buffer cache is full and 

we need to read another block into memory?

– We must choose an existing entry to replace

• Need a pokicy to choose a victim

– Can use First-in First-out
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– Can use First-in First-out

– Least Recently Used, or others.

• Timestamps required for LRU implementation is possible

• However, is strict LRU what we want?



File System Consistency

• File data is expected to survive

• Strict LRU could keep critical data in 

memory forever if it is frequently used.
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File System Consistency
• Generally, cached disk blocks are prioritised in 
terms of how critical they are to file system 
consistency
– Directory blocks, inode blocks if lost can corrupt  
entire filesystem
• E.g. imagine losing the root directory
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• E.g. imagine losing the root directory

• These blocks are usually scheduled for immediate write to 
disk

– Data blocks if lost corrupt only the file that they are 
associated with
• These block are only scheduled for write back to disk 
periodically

• In UNIX, flushd (flush daemon) flushes all modified blocks to 
disk every 30 seconds



File System Consistency
• Alternatively, use a write-through cache

– All modified blocks are written immediately to disk

– Generates much more disk traffic
• Temporary files written back

• Multiple updates not combined

– Used by DOS
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– Used by DOS
• Gave okay consistency when

– Floppies were removed from drives

– Users were constantly resetting (or crashing) their machines

– Still used, e.g. USB storage devices


