
UNIX File Management

1

UNIX File Management

• We will focus on two types of files

– Ordinary files (stream of bytes)

– Directories

• And mostly ignore the others

2

• And mostly ignore the others

– Character devices

– Block devices

– Named pipes

– Sockets

– Symbolic links

UNIX index node (inode)

• Each file is represented by an Inode on disk

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number (within a partition)

3

• Each inode has a unique number (within a partition)

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

– Mapping can be many-to-one

• Hard links

Inode Contents

• Mode

– Type

• Regular file or directory

– Access mode

• rwxrwxrwx

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

4

• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents

• atime

– Time of last access

• ctime

– Time when file was

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

5

– Time when file was

created

• mtime

– Time when file was

last modified

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents
• Size

– Size of the file in bytes

• Block count

– Number of disk blocks used by
the file.

• Note that number of blocks can
be much less than expected
given the file size

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

6

given the file size

– Files can be sparsely
populated

• E.g. write(f,“hello”); lseek(f,
1000000); write(f, “world”);

• Only needs to store the start
an end of file, not all the
empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

reference count

direct blocks

(10)

single indirect

double indirect

triple indirect

Inode Contents
• Direct Blocks

– Block numbers of first 10

blocks in the file

– Most files are small

• We can find blocks of file

directly from the inode

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
0 7 6

7
8

9

File

7

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect

double indirect

triple indirect

3

2

56

0

1

4

7

63

5

6

Disk

8

9
0

1
2
3

4
5
6

Problem

• How do we store files greater than 10

blocks in size?

– Adding significantly more direct entries in the

inode results in many unused entries most of

8

inode results in many unused entries most of

the time.

Inode Contents
• Single Indirect Block

– Block number of a block

containing block numbers

• In this case 8

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
0 714 9

10
11
12

13
14

15
16
17

9

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Disk

3

2

SI

56

0

1

4

7

63

5

6

8

9

28

29

20

38

61

43

46

12

15

10

13

17

11

14

16

0
1

2
3
4

5
6

7
8
9

Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– In previous example

10

– In previous example

• 10 direct + 8 indirect = 18 block file

– A more realistic example

• Assume 1Kbyte block size, 4 byte block numbers

• 10 * 1K + 1K/4 * 1K = 266 Kbytes

• For large majority of files (< 266 K), given the

inode, only one or two further accesses required

to read any block in file.

Inode Contents
• Double Indirect Block

– Block number of a block

containing block numbers of

blocks containing block

numbers

• Triple Indirect

– Block number of a block

containing block numbers of

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

11

containing block numbers of

blocks containing block

numbers of blocks containing

block numbers ☺

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Unix Inode Block Addressing

Scheme

12

Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256

13

– Single Indirect Blocks = 256

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

– 12 + 256 + 65536 + 16777216 = 16843020 = 16 GB

Where is the data block number

stored?
• Assume 4K blocks, 4 byte block numbers,

12 direct blocks

• A 1 byte file produced by

lseek(fd, 1048576) /* 1 megabyte */lseek(fd, 1048576) /* 1 megabyte */

write(fd, “x”, 1)

• What if we add

lseek(fd, 2097152) /* 2 megabyte */

write(fd, “x”, 1)
14

Space for Worked Example

15

Some Best and Worst Case

Access Patterns
Assume Inode already in memory

• To read 1 byte

– Best:

• 1 access via direct block

– Worst:

16

• 4 accesses via the triple indirect block

• To write 1 byte

– Best:

• 1 write via direct block (with no previous content)

– Worst:

• 4 reads (to get previous contents of block via triple indirect) + 1 write

(to write modified block back)

Worst Case Access Patterns with

Unallocated Indirect Blocks
• Worst to write 1 byte

– 4 writes (3 indirect blocks; 1 data)

– 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

– 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;

write 1 data)

17

– 3 reads, 2 writes (read 2, read-write 1; write 1 data)

• Worst to read 1 byte

– If reading writes a zero-filled block on disk

• Worst case is same as write 1 byte

– If not, worst-case depends on how deep is the current indirect

block tree.

Inode Summary

• The inode contains the on disk data associated with a
file
– Contains mode, owner, and other bookkeeping

– Efficient random and sequential access via indexed allocation

– Small files (the majority of files) require only a single access

– Larger files require progressively more disk accesses for random

18

– Larger files require progressively more disk accesses for random
access

• Sequential access is still efficient

– Can support really large files via increasing levels of indirection

Where/How are Inodes Stored

• System V Disk Layout (s5fs)

Boot

Block

Super

Block

Inode

Array
Data Blocks

19

• System V Disk Layout (s5fs)
– Boot Block

• contain code to bootstrap the OS

– Super Block
• Contains attributes of the file system itself

– e.g. size, number of inodes, start block of inode array, start of
data block area, free inode list, free data block list

– Inode Array

– Data blocks

Some problems with s5fs

• Inodes at start of disk; data blocks end
– Long seek times

• Must read inode before reading data blocks

• Only one superblock
– Corrupt the superblock and entire file system is lost

20

– Corrupt the superblock and entire file system is lost

• Block allocation was suboptimal
– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list
resulting the random allocation

• Inodes also allocated randomly
– Directory listing resulted in random inode access
patterns

Berkeley Fast Filesystem (FFS)

• Historically followed s5fs

– Addressed many limitations with s5fs

– Linux mostly similar, so we will focus on Linux

21

The Linux Ext2 File System
• Second Extended Filesystem

– Evolved from Minix filesystem (via “Extended Filesystem”)

• Features

– Block size (1024, 2048, and 4096) configured at FS creation

– Pre-allocated inodes (max number also configured at FS

creation)

– Block groups to increase locality of reference (from BSD

22

– Block groups to increase locality of reference (from BSD

FFS)

– Symbolic links < 60 characters stored within inode

• Main Problem: unclean unmount �e2fsck

– Ext3fs keeps a journal of (meta-data) updates

– Journal is a file where updated are logged

– Compatible with ext2fs

Layout of an Ext2 Partition

Boot

Block

Block Group

0
….

Block Group

n

23

• Disk divided into one or more partitions

• Partition:

– Reserved boot block,

– Collection of equally sized block groups

– All block groups have the same structure

Layout of a Block Group

• Replicated super block

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

1 blk n blks 1 blk 1 blk m blks k blks

24

• Replicated super block
– For e2fsck

• Group descriptors

• Bitmaps identify used inodes/blocks

• All block groups have the same number of data blocks

• Advantages of this structure:
– Replication simplifies recovery

– Proximity of inode tables and data blocks (reduces seek time)

Superblocks

• Size of the file system, block size and similar
parameters

• Overall free inode and block counters

• Data indicating whether file system check is
needed:

25

needed:
– Uncleanly unmounted

– Inconsistency

– Certain number of mounts since last check

– Certain time expired since last check

• Replicated to provide redundancy to aid
recoverability

Group Descriptors

• Location of the bitmaps

• Counter for free blocks and inodes in this

group

• Number of directories in the group

26

• Number of directories in the group

Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)

27

– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Aim to store files within a directory in the same group

Performance considerations

• EXT2 optimisations

– Read-ahead for directories

• For directory searching

– Block groups cluster related inodes and data blocks

– Pre-allocation of blocks on write (up to 8 blocks)

28

– Pre-allocation of blocks on write (up to 8 blocks)

• 8 bits in bit tables

• Better contiguity when there are concurrent writes

• FFS optimisations

– Aim to store files within a directory in the same group

29

Thus farP

• Inodes representing files laid out on disk.

• Inodes are referred to by number!!!

– How do users name files? By number?

– Try ls –i to see how useful inode numbers

30

– Try ls –i to see how useful inode numbers

areP.

Ext2fs Directories

• Directories are files of a special type
– Consider it a file of special format, managed by the kernel, that

uses most of the same machinery to implement it

inode rec_len name_len type name…

31

• Inodes, etcP

• Directories translate names to inode numbers

• Directory entries are of variable length

• Entries can be deleted in place
– inode = 0

– Add to length of previous entry

– use null terminated strings for names

Ext2fs Directories

• “f1” = inode 7

• “file2” = inode 43

• “f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

Inode No

Rec Length

Name Length

Name

32

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

0

Ext2fs Directories

• Note that inodes

can have more

than one name

– Called a Hard Link

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name

33

– Called a Hard Link

– Inode (file) 7 has

three names

• “f1” = inode 7

• “file2” = inode 7

• “f3” = inode 7

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

0

Inode Contents
• We can have many name for the same inode.

• When we delete a file by name, i.e. remove

the directory entry (link), how does the file

system know when to delete the underlying

inode?

– Keep a reference count in the inode

• Adding a name (directory entry) increments the

count

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

34

count

• Removing a name decrements the count

• If the reference count == 0, then we have no

names for the inode (it is unreachable), we can

delete the inode (underlying file or directory)

reference count
direct blocks (10)

40,58,26,8,12,

44,62,30,10,42

single indirect: 32

double indirect

triple indirect

Ext2fs Directories

• Deleting a filename

– rm file2

7

12

2

‘f’ ‘1’ 0 0

7

16

5

Inode No

Rec Length

Name Length

Name

35

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

0

Ext2fs Directories

• Deleting a filename

– rm file2

• Adjust the record

length to skip to next

7

32

2

‘f’ ‘1’ 0 0

Inode No

Rec Length

Name Length

Name

36

length to skip to next

valid entry

7

12

2

‘f’ ‘3’ 0 0

0

Kernel File-related Data

Structures and Interfaces
• We have reviewed how files and

directories are stored on disk

• We know the UNIX file system-call

interface

37

interface
fd = open(“file”,P),

close(fd),

read(fd,P), write(fd,P), lseek(fd,P),P..

• What is in between?

What do we need to keep track

of?
• File descriptors

– Each open file has a file descriptor

– Read/Write/lseek/P. use them to specify
which file to operate on.

38

• File pointer

– Determines where in the file the next read or
write is performed

• Mode

– Was the file opened read-only, etcP.

An Option?

• Use inode numbers as file descriptors and

add a file pointer to the inode

• Problems

39

• Problems

– What happens when we concurrently open

the same file twice?

• We should get two separate file descriptors and file

pointersP.

An Option?

• Single global open

file array

– fd is an index into

the array
fp

i-ptr

fd

inode

Array of Inodes

in RAM

40

the array

– Entries contain file

pointer and pointer

to an inode

i-ptr inode

Issues

• File descriptor 1 is

stdout

– Stdout is

• console for some

fp

i-ptr

fd

inode

41

• console for some

processes

• A file for others

• Entry 1 needs to be

different per

process!

i-ptr inode

Per-process File Descriptor

Array
• Each process has

its own open file

array

– Contains fp, i-ptr etc.

P1 fd

inode

fp

i-ptr

42

– Contains fp, i-ptr etc.

– Fd 1 can be any

inode for each

process (console,

log file).

inodei-ptr

fp

i-ptr

P2 fd

inode

Issue

• Fork
– Fork defines that the child

shares the file pointer with
the parent

• Dup2
– Also defines the file

P1 fd

inode

fp

i-ptr

43

– Also defines the file
descriptors share the file
pointer

• With per-process table, we
can only have independent
file pointers
– Even when accessing the

same file

inodei-ptr

fp

i-ptr

P2 fd

inode

Per-Process fd table with global

open file table
• Per-process file descriptor

array

– Contains pointers to open
file table entry

• Open file table array

– Contain entries with a fp
and pointer to an inode.

P1 fd

inode

f-ptr fp

i-ptr

44

and pointer to an inode.

• Provides

– Shared file pointers if
required

– Independent file pointers
if required

• Example:

– All three fds refer to the
same file, two share a file
pointer, one has an
independent file pointer

inode

f-ptr

f-ptr
P2 fd

inode

i-ptr

fp

i-ptr

Per-process

File Descriptor

Tables
Open File Table

Per-Process fd table with global

open file table
• Used by Linux and

most other Unix

operating systems

P1 fd

inode

f-ptr fp

i-ptr

45

inode

f-ptr

f-ptr
P2 fd

inode

i-ptr

fp

i-ptr

Per-process

File Descriptor

Tables
Open File Table

Older Systems only had a single

file system
• They had file system specific open, close, read,

write, P calls.

• The open file table pointed to an in-memory

representation of the inode

46

representation of the inode

– inode format was specific to the file system used

(s5fs, Berkley FFS, etc)

• However, modern systems need to support

many file system types

– ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

Supporting Multiple File

Systems
• Alternatives

– Change the file system code to understand
different file system types
• Prone to code bloat, complex, non-solution

– Provide a framework that separates file

47

– Provide a framework that separates file
system independent and file system
dependent code.
• Allows different file systems to be “plugged in”

• File descriptor, open file table and other parts of
the kernel can be independent of underlying file
system

VFS

architecture

48

architecture

Virtual File System (VFS)

• Provides single system call interface for many file

systems

– E.g., UFS, Ext2, XFS, DOS, ISO9660,P

• Transparent handling of network file systems

– E.g., NFS, AFS, CODA

49

– E.g., NFS, AFS, CODA

• File-based interface to arbitrary device drivers (/dev)

• File-based interface to kernel data structures (/proc)

• Provides an indirection layer for system calls

– File operation table set up at file open time

– Points to actual handling code for particular type

– Further file operations redirected to those functions

The file system independent code

deals with vfs and vnodes

P1 fd

vnode

f-ptr fp

v-ptr
inode

50

vnode

f-ptr

f-ptrP2 fd

v-ptr

fp

v-ptr

Per-process

File Descriptor

Tables Open File Table

inode

File system

dependent

code

VFS Interface
• Reference

– S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

– Linux and OS/161 differ slightly, but the principles are the same

• Two major data types
– vfs

• Represents all file system types

51

• Represents all file system types

• Contains pointers to functions to manipulate each file system as a
whole (e.g. mount, unmount)

– Form a standard interface to the file system

– vnode

• Represents a file (inode) in the underlying filesystem

• Points to the real inode

• Contains pointers to functions to manipulate files/inodes (e.g. open,
close, read, write,P)

A look at OS/161’s VFS

The OS161’s file system type

Represents interface to a mounted filesystem

struct fs {

int (*fs_sync)(struct fs *);

const char *(*fs_getvolname)(struct fs *);

struct vnode *(*fs_getroot)(struct fs *);

Force the

filesystem to

flush its content

to disk

Retrieve the

volume name

Retrieve the vnode

52

struct vnode *(*fs_getroot)(struct fs *);

int (*fs_unmount)(struct fs *);

void *fs_data;

};

Retrieve the vnode

associated with the

root of the

filesystem

Unmount the filesystem

Note: mount called via

function ptr passed to
vfs_mount

Private file system

specific data

Vnode

struct vnode {

int vn_refcount;

int vn_opencount;

struct lock *vn_countlock;

Count the

number of

“references”

to this vnode

Number of

times vnode

is currently

open

Lock for mutual

exclusive

access to

counts

53

struct lock *vn_countlock;

struct fs *vn_fs;

void *vn_data;

const struct vnode_ops *vn_ops;

};

Pointer to FS

containing

the vnode

Pointer to FS

specific

vnode data

(e.g. inode)

Array of pointers

to functions

operating on

vnodes

Access Vnodes via Vnode Operations

P1 fd

vnode

f-ptr fp

v-ptr
inode

54

vnode

f-ptr

f-ptrP2 fd

v-ptr

fp

v-ptr

Open File Table

inode

Vnode Ops

Ext2fs_read

Ext2fs_write

Vnode Ops
struct vnode_ops {

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_open)(struct vnode *object, int flags_from_open);
int (*vop_close)(struct vnode *object);
int (*vop_reclaim)(struct vnode *vnode);

int (*vop_read)(struct vnode *file, struct uio *uio);
int (*vop_readlink)(struct vnode *link, struct uio *uio);
int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);

55

int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);
int (*vop_write)(struct vnode *file, struct uio *uio);
int (*vop_ioctl)(struct vnode *object, int op, userptr_t data);
int (*vop_stat)(struct vnode *object, struct stat *statbuf);
int (*vop_gettype)(struct vnode *object, int *result);
int (*vop_tryseek)(struct vnode *object, off_t pos);
int (*vop_fsync)(struct vnode *object);
int (*vop_mmap)(struct vnode *file /* add stuff */);
int (*vop_truncate)(struct vnode *file, off_t len);
int (*vop_namefile)(struct vnode *file, struct uio *uio);

Vnode Ops
int (*vop_creat)(struct vnode *dir,

const char *name, int excl,
struct vnode **result);

int (*vop_symlink)(struct vnode *dir,
const char *contents, const char *name);

int (*vop_mkdir)(struct vnode *parentdir,
const char *name);

int (*vop_link)(struct vnode *dir,
const char *name, struct vnode *file);

int (*vop_remove)(struct vnode *dir,

56

int (*vop_remove)(struct vnode *dir,
const char *name);

int (*vop_rmdir)(struct vnode *dir,
const char *name);

int (*vop_rename)(struct vnode *vn1, const char *name1,
struct vnode *vn2, const char *name2);

int (*vop_lookup)(struct vnode *dir,
char *pathname, struct vnode **result);

int (*vop_lookparent)(struct vnode *dir,
char *pathname, struct vnode **result,
char *buf, size_t len);

};

Vnode Ops
• Note that most operation are on vnodes. How do

we operate on file names?

– Higher level API on names that uses the internal

VOP_* functions
int vfs_open(char *path, int openflags, struct vnode **ret);

void vfs_close(struct vnode *vn);

57

void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int vfs_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove(char *path);

int vfs_rmdir(char *path);

int vfs_rename(char *oldpath, char *newpath);

int vfs_chdir(char *path);

int vfs_getcwd(struct uio *buf);

Example: OS/161 emufs vnode

ops
/*

* Function table for emufs
files.

*/

static const struct vnode_ops
emufs_fileops = {

VOP_MAGIC, /* mark this a
valid vnode ops table */

emufs_file_gettype,

emufs_tryseek,

emufs_fsync,

UNIMP, /* mmap */

emufs_truncate,

NOTDIR, /* namefile */

58

valid vnode ops table */

emufs_open,

emufs_close,

emufs_reclaim,

emufs_read,

NOTDIR, /* readlink */

NOTDIR, /* getdirentry */

emufs_write,

emufs_ioctl,

emufs_stat,

NOTDIR, /* creat */

NOTDIR, /* symlink */

NOTDIR, /* mkdir */

NOTDIR, /* link */

NOTDIR, /* remove */

NOTDIR, /* rmdir */

NOTDIR, /* rename */

NOTDIR, /* lookup */

NOTDIR, /* lookparent */

};

Some assignment points

• gcc and literal strings

– “con:”

• tryseek()

• stat()• stat()

• uio

• copyinstr()

• curthread

– curthread->t_vmspace

59

60

61

Buffer

Cache

62

Cache

Buffer

• Buffer:

– Temporary storage used when transferring

data between two entities

• Especially when the entities work at different rates

63

• Especially when the entities work at different rates

• Or when the unit of transfer is incompatible

• Example: between application program and disk

Buffering Disk Blocks
• Allow applications to work with

arbitrarily sized region of a file

– However, apps can still

optimise for a particular block

size

Buffers

in Kernel

RAM

Application

Program

Transfer of

arbitrarily

64Disk

4

7

5

6

12

15

10

13

11

14

16

Transfer of

whole

blocks

arbitrarily

sized regions

of file

Buffering Disk Blocks
• Writes can return immediately

after copying to kernel buffer

– Avoids waiting until write to

disk is complete

– Write is scheduled in the

background

Buffers

in Kernel

RAM

Application

Program

Transfer of

arbitrarily

65Disk

4

7

5

6

12

15

10

13

11

14

16

Transfer of

whole

blocks

arbitrarily

sized regions

of file

Buffering Disk Blocks
• Can implement read-ahead by

pre-loading next block on disk

into kernel buffer

– Avoids having to wait until

next read is issued

Buffers

in Kernel

RAM

Application

Program

Transfer of

arbitrarily

66Disk

4

7

5

6

12

15

10

13

11

14

16

Transfer of

whole

blocks

arbitrarily

sized regions

of file

Cache

• Cache:

– Fast storage used to temporarily hold data to

speed up repeated access to the data

• Example: Main memory can cache disk blocks

67

• Example: Main memory can cache disk blocks

Caching Disk Blocks
• On access

– Before loading block from disk,

check if it is in cache first

• Avoids disk accesses

• Can optimise for repeated access

for single or several processes

Cached

blocks in

Kernel

RAM

Application

Program

Transfer of

arbitrarily

68Disk

4

7

5

6

12

15

10

13

11

14

16

Transfer of

whole

blocks

arbitrarily

sized regions

of file

Buffering and caching are

related
• Data is read into buffer; extra cache copy

would be wasteful

• After use, block should be put in a cache

• Future access may hit cached copy

69

• Future access may hit cached copy

• Cache utilises unused kernel memory

space; may have to shrink

Unix Buffer Cache

On read
– Hash the
device#, block#

– Check if match in
buffer cache

70

buffer cache

– Yes, simply use
in-memory copy

– No, follow the
collision chain

– If not found, we
load block from
disk into cache

Replacement

• What happens when the buffer cache is full and

we need to read another block into memory?

– We must choose an existing entry to replace

• Need a pokicy to choose a victim

– Can use First-in First-out

71

– Can use First-in First-out

– Least Recently Used, or others.

• Timestamps required for LRU implementation is possible

• However, is strict LRU what we want?

File System Consistency

• File data is expected to survive

• Strict LRU could keep critical data in

memory forever if it is frequently used.

72

File System Consistency
• Generally, cached disk blocks are prioritised in
terms of how critical they are to file system
consistency
– Directory blocks, inode blocks if lost can corrupt
entire filesystem
• E.g. imagine losing the root directory

73

• E.g. imagine losing the root directory

• These blocks are usually scheduled for immediate write to
disk

– Data blocks if lost corrupt only the file that they are
associated with
• These block are only scheduled for write back to disk
periodically

• In UNIX, flushd (flush daemon) flushes all modified blocks to
disk every 30 seconds

File System Consistency
• Alternatively, use a write-through cache

– All modified blocks are written immediately to disk

– Generates much more disk traffic
• Temporary files written back

• Multiple updates not combined

– Used by DOS

74

– Used by DOS
• Gave okay consistency when

– Floppies were removed from drives

– Users were constantly resetting (or crashing) their machines

– Still used, e.g. USB storage devices

