
Virtual Memory

1

Memory Management Unit

2

The position and function of the MMU

• Virtual Memory
– Divided into equal-

sized pages

– A mapping is a
translation between

• A page and a frame

• Physical Memory

– Divided into

equal-sized

frames

15

14

13

12

11

10

9

8

Virtual Address

Space Paging

3

• A page and a frame

• A page and null

– Mappings defined at
runtime

• They can change

– Address space can
have holes

– Process does not
have to be
contiguous in
physical memory

7

6

5

4

3

2

1

0

8

1

12

10

2

3

11

Physical Address

Space0

1

2

3

4

5

6

7

Typical Address

Space Layout
• Stack region is at top,

and can grow down

• Heap has free space to

grow up

• Text is typically read-only

15

14

13

12

11

10

9

8

Virtual Address

Space

Kernel

Stack

Shared

Libraries

4

• Text is typically read-only

• Kernel is in a reserved,

protected, shared region

• 0-th page typically not

used, why?

7

6

5

4

3

2

1

0

8
Libraries

BSS

(heap)

Data

Text

(Code)

• A process may
be only partially
resident
– Allows OS to
store individual

Virtual Address

Space

4

2

15

14

13

12

11

10

9

8

14

10

6

Programmer’s perspective:

logically present

System’s perspective: Not

mapped, data on disk

5

store individual
pages on disk

– Saves memory
for infrequently
used data & code

• What happens if
we access non-
resident
memory?

1

15

5

3

13

Physical Address

Space

7

6

5

3

1

0

8 10

4

2

Disk

2

4

13

Proc 1 Address

Space

Physical

Address Space

15

14

13

12

11

10

9

8

15

14

13

12

11

10

9

8

Proc 2 Address

Space

3

15

2

14 14

Currently

running

6

13

4

1

3

13

7

6

5

3

1

0

8

4

2

7

6

5

3

1

0

8

4

2

3

15 1

2

Disk

Memory

Access

2

Page Faults
• Referencing an invalid page triggers a page fault

• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process

– Page not resident

• Get an empty frame

7

• Get an empty frame

• Load page from disk

• Update page (translation) table (enter frame #, set valid bit, etc.)

• Restart the faulting instruction

• Page table for

resident part of

address space

Virtual Address

Space 15

14

13

12

11

10

9

8

6

0

Page

Table

8

1

15

5

4

5

2

3

13

Physical

Address Space

7

6

5

3

1

0

8

4

2

3

1

7

0

1

2

3

4

5

6

7

• Note: Some implementations store disk

block numbers of non-resident pages in

the page table (with valid bit Unset)

9

Shared Pages

• Private code and data

– Each process has own

copy of code and data

– Code and data can

appear anywhere in

• Shared code

– Single copy of code

shared between all

processes executing it

– Code must not be self

10

appear anywhere in

the address space

– Code must not be self

modifying

– Code must appear at

same address in all

processes

2

6

13

Proc 1 Address

Space

Physical

Address Space

15

14

13

12

11

10

9

8

5

15

14

13

12

11

10

9

8

0

Proc 2 Address

Space

11

13

4

3

1

3

13

7

6

5

3

1

0

8

4

2

2

4

7
Page

Table

7

6

5

3

1

0

8

4

2

1

2

7
Page

Table

Two (or more)

processes

running the

same program

and sharing

the text section

Page Table Structure
• Page table is (logically) an array of

frame numbers

– Index by page number

• Each page-table entry (PTE) also has

other bits

5

12

other bits

2

4

7
Page

Table

PTE bits
• Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page

• Modified bit
– Also called dirty bit, it indicates the page may have been

modified in memory

• Reference bit
– Indicates the page has been accessed

13

– Indicates the page has been accessed

• Protection bits
– Read permission, Write permission, Execute permission

– Or combinations of the above

• Caching bit
– Use to indicate processor should bypass the cache when

accessing memory

• Example: to access device registers or memory

Address Translation

• Every (virtual) memory address issued by

the CPU must be translated to physical

memory

– Every load and every store instruction

14

– Every load and every store instruction

– Every instruction fetch

• Need Translation Hardware

• In paging system, translation involves

replace page number with a frame number

Page tables (recap)

virtual memory
virtual and physical mem chopped up in pages

• programs use virtual
addresses

• virtual to physical mapping
by MMUby MMU

-first check if page present
(present/absent bit)

-if yes: address in page table form
MSBs in physical address

-if no: bring in the page from disk
���� page fault

Page Tables

• Assume we have
– 32-bit virtual address (4 Gbyte address space)

– 4 KByte page size

– How many page table entries do we need for one
process?

18

process?

Page Tables

• Assume we have
– 64-bit virtual address (humungous address space)

– 4 KByte page size

– How many page table entries do we need for one
process?

• Problem:

19

• Problem:
– Page table is very large

– Access has to be fast, lookup for every memory
reference

– Where do we store the page table?
• Registers?

• Main memory?

Page Tables

• Page tables are implemented as data structures in main
memory

• Most processes do not use the full 4GB address space
– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack

• We need a compact representation that does not waste

20

• We need a compact representation that does not waste
space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity

– Use data structures which only represent resident pages

– Use VM techniques for page tables (details left to extended OS)

Two-level Page

Table
• 2nd –level

page tables

representing

unmapped

pages are not

21

pages are not

allocated

– Null in the

top-level

page table

Two-level Translation

22

Alternative: Inverted Page Table

PID VPN next

PID VPN offset

Index

0

1

Hash Anchor Table

(HAT)

ctrl

1

2

3

4

5

6

F

IPT: entry for each physical frame

Hash

Alternative: Inverted Page Table

PID VPN next

0

PID VPN offset

Index

0

1

Hash Anchor Table

(HAT)

ctrl

0x5 0x123

1

2

F

0x40C

0x40D

F

F

Hash
1 0x1A 0x40C

0 0x5 0x0

2

0x40C 0x123

ppn offset

Inverted Page Table (IPT)
• “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it’s
a frame table).

• Algorithm
– Compute hash of page number

– Extract index from hash table

26

– Extract index from hash table

– Use this to index into inverted page table

– Match the PID and page number in the IPT entry

– If match, use the index value as frame # for
translation

– If no match, get next candidate IPT entry from chain
field

– If NULL chain entry ⇒ page fault

Properties of IPTs

• IPT grows with size of RAM, NOT virtual address space

• Frame table is needed anyway (for page replacement,
more later)

• Need a separate data structure for non-resident pages

• Saves a vast amount of space (especially on 64-bit

27

• Saves a vast amount of space (especially on 64-bit
systems)

• Used in some IBM and HP workstations

Given n processes

• how many page tables will the system

have for

– ‘normal’ page tables

– inverted page tables?– inverted page tables?

Another look at sharingF

2

6

13

Proc 1 Address

Space

Physical

Address Space

15

14

13

12

11

10

9

8

5

15

14

13

12

11

10

9

8

0

Proc 2 Address

Space

30

13

4

3

1

3

13

7

6

5

3

1

0

8

4

2

2

4

7
Page

Table

7

6

5

3

1

0

8

4

2

1

2

7
Page

Table

Two (or more)

processes

running the

same program

and sharing

the text section

• Problem:
– Each virtual memory reference can cause two
physical memory accesses
• One to fetch the page table entry

• One to fetch/store the data

⇒

VM Implementation Issue

31

⇒Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)

• Contains recently used page table entries

• Associative, high-speed memory, similar to cache memory

• May be under OS control (unlike memory cache)

TLB operationOn-CPU

hardware

device!!!

32

Data

structure

in main

memory

Translation Lookaside Buffer

• Given a virtual address, processor examines the

TLB

• If matching PTE found (TLB hit), the address is

translated

33

translated

• Otherwise (TLB miss), the page number is used

to index the process’s page table

– If PT contains a valid entry, reload TLB and restart

– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in

• Otherwise, allocate a new page or raise an exception

TLB properties

• Page table is (logically) an array of frame

numbers

• TLB holds a (recently used) subset of PT entries

– Each TLB entry must be identified (tagged) with the

34

– Each TLB entry must be identified (tagged) with the

page # it translates

– Access is by associative lookup:

• All TLB entries’ tags are concurrently compared to the page #

• TLB is associative (or content-addressable) memory

TLB properties
• TLB may or may not be under direct OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB

• Example: Pentium

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and

35

• On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

• Example: MIPS

• TLB size: typically 64-128 entries

• Can have separate TLBs for instruction fetch
and data access

• TLBs can also be used with inverted page tables
(and others)

TLB and context switching

• TLB is a shared piece of hardware

• Page tables are per-process (address space)

• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate
all entries)

36

all entries)
• high context-switching overhead (Intel x86)

– or tag entries with address-space ID (ASID)
• called a tagged TLB

• used (in some form) on all modern architectures

• TLB entry: ASID, page #, frame #, valid and write-protect
bits

TLB effect

• Without TLB

– Average number of physical memory

references per virtual reference

= 2

37

= 2

• With TLB (assume 99% hit ratio)

– Average number of physical memory

references per virtual reference

= .99 * 1 + 0.01 * 2

= 1.01

Recap - Simplified Components of

VM System

CPU

1 3 2

Virtual Address Spaces

(3 processes)

Page Tables for 3

processes
Frame Table

38

1 2 3

CPU

Frame Pool

TLB

Physical Memory

MIPS R3000 TLB

39

• N = Not cacheable

• D = Dirty = Write protect

• G = Global (ignore ASID

in lookup)

• V = valid bit

• 64 TLB entries

• Accessed via software through
Cooprocessor 0 registers

– EntryHi and EntryLo

R3000 Address

Space Layout
• kuseg:

– 2 gigabytes

– TLB translated (mapped)

– Cacheable (depending on ‘N’ bit)

– user-mode and kernel mode

kseg0

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

40

– user-mode and kernel mode

accessible

– Page size is 4K

kuseg

0x00000000

0x80000000

R3000 Address

Space Layout
– Switching processes

switches the translation

(page table) for kuseg
kseg0

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

41

Proc 3

kuseg

0x00000000

0x80000000

Proc 2

kuseg

Proc 1

kuseg

R3000 Address

Space Layout
• kseg0:

– 512 megabytes

– Fixed translation window to
physical memory

• 0x80000000 - 0x9fffffff virtual =
0x00000000 - 0x1fffffff physical

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

42

0x00000000 - 0x1fffffff physical

• TLB not used

– Cacheable

– Only kernel-mode accessible

– Usually where the kernel code is
placed

kuseg

0x00000000

Physical Memory

R3000 Address

Space Layout
• kseg1:

– 512 megabytes

– Fixed translation window to
physical memory

• 0xa0000000 - 0xbfffffff virtual =
0x00000000 - 0x1fffffff physical

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

43

0x00000000 - 0x1fffffff physical

• TLB not used

– NOT cacheable

– Only kernel-mode accessible

– Where devices are accessed (and
boot ROM)

kuseg

0x00000000

Physical Memory

R3000 Address

Space Layout
• kseg2:

– 1024 megabytes

– TLB translated (mapped)

– Cacheable

• Depending on the ‘N’-bit

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff

44

• Depending on the ‘N’-bit

– Only kernel-mode accessible

– Can be used to store the virtual

linear array page table

kuseg

0x00000000

