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Memory Management Unit
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The position and function of the MMU



• Virtual Memory
– Divided into equal-

sized pages

– A mapping is a 
translation between 

• A page and a frame

• Physical Memory

– Divided into 

equal-sized 

frames
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• A page and a frame

• A page and null

– Mappings defined at 
runtime

• They can change

– Address space can 
have holes

– Process does not 
have to be 
contiguous in 
physical memory

7

6

5

4

3

2

1

0

8

1

12

10

2

3

11

Physical Address 

Space0

1

2

3

4

5

6

7



Typical Address 

Space Layout
• Stack region is at top, 

and can grow down

• Heap has free space to 

grow up

• Text is typically read-only
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• Text is typically read-only

• Kernel is in a reserved, 

protected, shared region

• 0-th page typically not 

used, why?
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• A process may 
be only partially 
resident
– Allows OS to 
store individual 
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Programmer’s perspective: 

logically present

System’s perspective: Not 

mapped, data on disk
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store individual 
pages on disk

– Saves memory 
for infrequently 
used data & code

• What happens if 
we access non-
resident 
memory?
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Page Faults
• Referencing an invalid page triggers a page fault

• An exception handled by the OS

• Broadly, two standard page fault types
– Illegal Address (protection error)

• Signal or kill the process

– Page not resident

• Get an empty frame
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• Get an empty frame

• Load page from disk

• Update page (translation) table (enter frame #, set valid bit, etc.)

• Restart the faulting instruction



• Page table for 

resident part of 

address space 
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• Note: Some implementations store disk 

block numbers of non-resident pages in 

the page table (with valid bit Unset)
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Shared Pages

• Private code and data

– Each process has own 

copy of code and data

– Code and data can 

appear anywhere in 

• Shared code

– Single copy of code 

shared between all 

processes executing it

– Code must not be self 

10

appear anywhere in 

the address space

– Code must not be self 

modifying

– Code must appear at 

same address in all 

processes
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Page Table Structure
• Page table is (logically) an array of 

frame numbers

– Index by page number

• Each page-table entry (PTE) also has 

other bits
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PTE bits
• Present/Absent bit

– Also called valid bit, it indicates a valid mapping for the page

• Modified bit
– Also called dirty bit, it indicates the page may have been 

modified in memory

• Reference bit
– Indicates the page has been accessed
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– Indicates the page has been accessed

• Protection bits
– Read permission, Write permission, Execute permission

– Or combinations of the above

• Caching bit
– Use to indicate processor should bypass the cache when 

accessing memory

• Example: to access device registers or memory



Address Translation

• Every (virtual) memory address issued by 

the CPU must be translated to physical 

memory

– Every load and every store instruction
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– Every load and every store instruction

– Every instruction fetch

• Need Translation Hardware

• In paging system, translation involves 

replace page number with a frame number





Page tables (recap)



virtual memory
virtual and physical mem chopped up in pages

• programs use virtual 
addresses

• virtual to physical mapping 
by MMUby MMU

-first check if page present 
(present/absent bit)

-if yes: address in page table form 
MSBs in physical address

-if no: bring in the page from disk 
���� page fault



Page Tables

• Assume we have
– 32-bit virtual address (4 Gbyte address space)

– 4 KByte page size

– How many page table entries do we need for one 
process?
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process?



Page Tables

• Assume we have
– 64-bit virtual address (humungous address space)

– 4 KByte page size

– How many page table entries do we need for one 
process?

• Problem:
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• Problem:
– Page table is very large

– Access has to be fast, lookup for every memory 
reference

– Where do we store the page table?
• Registers?

• Main memory?



Page Tables

• Page tables are implemented as data structures in main 
memory

• Most processes do not use the full 4GB address space
– e.g., 0.1 – 1 MB text, 0.1 – 10 MB data, 0.1 MB stack

• We need a compact representation that does not waste 
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• We need a compact representation that does not waste 
space
– But is still very fast to search

• Three basic schemes
– Use data structures that adapt to sparsity

– Use data structures which only represent resident pages

– Use VM techniques for page tables (details left to extended OS)



Two-level Page 

Table
• 2nd –level 

page tables 

representing 

unmapped 

pages are not 
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pages are not 

allocated

– Null in the 

top-level 

page table



Two-level Translation
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Alternative: Inverted Page Table
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Alternative: Inverted Page Table

PID VPN next

0

PID VPN offset
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Inverted Page Table (IPT)
• “Inverted page table” is an array of page 
numbers sorted (indexed) by frame number (it’s 
a frame table).

• Algorithm
– Compute hash of page number

– Extract index from hash table
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– Extract index from hash table

– Use this to index into inverted page table

– Match the PID and page number in the IPT entry

– If match, use the index value as frame # for 
translation

– If no match, get next candidate IPT entry from chain 
field

– If NULL chain entry  ⇒ page fault



Properties of IPTs

• IPT grows with size of RAM, NOT virtual address space

• Frame table is needed anyway (for page replacement, 
more later)

• Need a separate data structure for non-resident pages

• Saves a vast amount of space (especially on 64-bit 
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• Saves a vast amount of space (especially on 64-bit 
systems)

• Used in some IBM and HP workstations



Given n processes

• how many page tables will the system 

have for

– ‘normal’ page tables

– inverted page tables?– inverted page tables?



Another look at sharingF
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• Problem:
– Each virtual memory reference can cause two 
physical memory accesses
• One to fetch the page table entry

• One to fetch/store the data

⇒

VM Implementation Issue
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⇒Intolerable performance impact!!

• Solution:
– High-speed cache for page table entries (PTEs)

• Called a translation look-aside buffer (TLB)

• Contains recently used page table entries

• Associative, high-speed memory, similar to cache memory

• May be under OS control (unlike memory cache)



TLB operationOn-CPU 

hardware 

device!!!

32

Data 

structure 

in main 

memory



Translation Lookaside Buffer

• Given a virtual address, processor examines the 

TLB

• If matching PTE found (TLB hit), the address is 

translated
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translated

• Otherwise (TLB miss), the page number is used 

to index the process’s page table

– If PT contains a valid entry, reload TLB and restart

– Otherwise, (page fault) check if page is on disk

• If on disk, swap it in

• Otherwise, allocate a new page or raise an exception



TLB properties

• Page table is (logically) an array of frame 

numbers

• TLB holds a (recently used) subset of PT entries

– Each TLB entry must be identified (tagged) with the 
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– Each TLB entry must be identified (tagged) with the 

page # it translates

– Access is by associative lookup:

• All TLB entries’ tags are concurrently compared to the page #

• TLB is associative (or content-addressable) memory



TLB properties
• TLB may or may not be under direct OS control

– Hardware-loaded TLB
• On miss, hardware performs PT lookup and reloads TLB

• Example: Pentium

– Software-loaded TLB
• On miss, hardware generates a TLB miss exception, and 
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• On miss, hardware generates a TLB miss exception, and 
exception handler reloads TLB

• Example: MIPS

• TLB size: typically 64-128 entries

• Can have separate TLBs for instruction fetch 
and data access

• TLBs can also be used with inverted page tables 
(and others)  



TLB and context switching

• TLB is a shared piece of hardware

• Page tables are per-process (address space)

• TLB entries are process-specific

– On context switch need to flush the TLB (invalidate 
all entries)
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all entries)
• high context-switching overhead (Intel x86)

– or tag entries with address-space ID (ASID)
• called a tagged TLB

• used (in some form) on all modern architectures

• TLB entry: ASID, page #, frame #, valid and write-protect 
bits



TLB effect

• Without TLB

– Average number of physical memory 

references per virtual reference 

= 2
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= 2

• With TLB (assume 99% hit ratio)

– Average number of physical memory 

references per virtual reference

= .99 * 1 + 0.01 * 2

= 1.01 



Recap - Simplified Components of 

VM System

CPU

1 3 2

Virtual Address Spaces 

(3 processes)

Page Tables for 3 

processes
Frame Table
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1 2 3

CPU

Frame Pool

TLB

Physical Memory



MIPS R3000 TLB
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• N = Not cacheable

• D = Dirty = Write protect

• G = Global (ignore ASID 

in lookup)

• V = valid bit

• 64 TLB entries

• Accessed via software through 
Cooprocessor 0 registers

– EntryHi and EntryLo



R3000 Address 

Space Layout
• kuseg: 

– 2 gigabytes

– TLB translated (mapped)

– Cacheable (depending on ‘N’ bit)

– user-mode and kernel mode 

kseg0

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF
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– user-mode and kernel mode 

accessible

– Page size is 4K

kuseg

0x00000000

0x80000000



R3000 Address 

Space Layout
– Switching processes 

switches the translation 

(page table) for kuseg
kseg0

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF
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Proc 3

kuseg

0x00000000

0x80000000

Proc 2

kuseg

Proc 1

kuseg



R3000 Address 

Space Layout
• kseg0: 

– 512 megabytes

– Fixed translation window to 
physical memory

• 0x80000000 - 0x9fffffff virtual = 
0x00000000 - 0x1fffffff physical

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff
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0x00000000 - 0x1fffffff physical

• TLB not used

– Cacheable

– Only kernel-mode accessible

– Usually where the kernel code is 
placed

kuseg

0x00000000

Physical Memory



R3000 Address 

Space Layout
• kseg1: 

– 512 megabytes

– Fixed translation window to 
physical memory

• 0xa0000000 - 0xbfffffff virtual = 
0x00000000 - 0x1fffffff physical

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff
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0x00000000 - 0x1fffffff physical

• TLB not used

– NOT cacheable

– Only kernel-mode accessible

– Where devices are accessed (and 
boot ROM)

kuseg

0x00000000

Physical Memory



R3000 Address 

Space Layout
• kseg2: 

– 1024 megabytes

– TLB translated (mapped)

– Cacheable

• Depending on the ‘N’-bit

kseg0
0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xffffffff
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• Depending on the ‘N’-bit

– Only kernel-mode accessible

– Can be used to store the virtual 

linear array page table

kuseg

0x00000000


