
5/27/2010

1

Assignment 2 Parts

• Memory Management

• Address Space Management and TLB Refill

void vm_bootstrap(void);

/* Allocate/free kernel heap pages (called by
kmalloc/kfree) */

vaddr_t alloc_kpages(int npages);

void free_kpages(vaddr_t addr);

• How do I figure out how big memory is?

• ram_getsize() will return the current top of

used memory, and the size of physical

memory configured for sys161. See

kern/arch/mips/vm/ram.c to understand the

basic allocator that you need to mostly

supercede with your own.

• Where can I put my frame table

• You frame table should be dynamically sizeable

based on physical memory in the machine. My

suggestion is that you compute somewhere in

RAM to put it and just use it in that location.

• Here is a little code to illustrate what I mean
struct frame_table_entry *frame_table;

location = top_of_ram - (top_of_ram / 4K * 4)

frame_table = (struct frame_table_entry *) location;

Note that you will have to mark entries the in table

as used for both the table itself, and os/161

allocated to this point in time.

5/27/2010

2

• OS/161 allocated more than a page using

alloc_kpages

• Yes, the sample implementation of execve

does this - you don't need to support it. To

avoid this (and enable you to run more testing

programs), set __ARG_MAX to 4096 in

kern/include/kern/limits.h.

struct addrspace *as_create(void);

int as_copy(struct addrspace *src,

struct addrspace **ret);

void as_activate(struct addrspace *);

void as_destroy(struct addrspace *);

int as_define_region(struct addrspace *as,

vaddr_t vaddr, size_t sz,

int readable,

int writeable,

int executable);

int as_prepare_load(struct addrspace *as);

int as_complete_load(struct addrspace *as);

int as_define_stack(struct addrspace *as,

vaddr_t *initstackptr);

/* Fault handling function called by trap code */

int vm_fault(int faulttype, vaddr_t faultaddress);

• Don't use kprintf style debugging in the TLB

refill routine after TLB write

• kprintf causes a context switch (it blocks)

which flushes the TLB, which potentially ejects

the entry you have just loaded - infinite loop,

here we come.

• How do I allocate page tables?

• alloc_kpage() returns a single page that

happens to be the correct size for a two-level

page table with 4-byte entries. Note: You need

to use 4 bytes entries to avoid undue

complexity in allocation, EntryLo and pointers

happen to be 4 bytes in size.

5/27/2010

3

• How can my my allocator work before and after
it is intialised?

• Try something along the lines of:

struct frame_table_entry *ft = 0;

alloc_kpages()

{

if (ft == 0) {

/* use ram_stealmem */

}

else {

/* use my allocator as frame table is now
initialises */

}

}

struct L1e {

uint32_t *L2pagetable;

};

void func(vaddr_t v)

{

struct L1e *L1;

uint32_t *L2;

uint32_t pte;

unsigned int v1, v2;

v1 = v >> 22;

v2 = v << 10 >> 22;

L2 = L1[v1].L2pagetable;

if (L2 == NULL) {

panic();

}

pte = L2[v2];

}

