
Virtual Memory II

1

TLB Recap

• Fast associative cache of page table

entries

– Contains a subset of the page table

– What happens if required entry for translation

2

– What happens if required entry for translation

is not present (a TLB miss)?

TLB Recap

• TLB may or may not be under OS control

– Hardware-loaded TLB

• On miss, hardware performs PT lookup and

reloads TLB

3

reloads TLB

• Example: Pentium

– Software-loaded TLB

• On miss, hardware generates a TLB miss

exception, and exception handler reloads TLB

• Example: MIPS

Aside: even if filled by software

• TLB still a hardware translator

R3000 TLB

Handling
• TLB refill is handled by

software

– An exception handler

• TLB refill exceptions
kseg0

0x80000000

kseg1

kseg2

0xA0000000

0xC0000000

0xFFFFFFFF

5

• TLB refill exceptions

accessing kuseg are

expected to be frequent

– CPU optimised for handling

kuseg TLB refills by having

a special exception handler

just for TLB refills

kuseg

0x00000000

0x80000000

Exception Vectors

6

Special exception

vector for kuseg

TLB refills

Special Exception Vector

• Can be optimised for TLB refill
only

– Does not need to check the
exception type

– Does not need to save any
registers

• It uses a specialised

• An example routine

mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay

slot

lw k1,0(k1) # may double

fault (k0 = orig EPC)

7

• It uses a specialised
assembly routine that only
uses k0 and k1.

– Does not check if PTE exists

• Assumes virtual linear array –
see extended OS notes

• With careful data structure
choice, exception handler can
be made very fast

nop

mtc0 k1,C0_ENTRYLO

nop

tlbwr

jr k0

rfe

MIPS VM Related Exceptions
• TLB refill

– Handled via special exception vector

– Needs to be very fast

• Others handled by the general exception vector
– TLB Mod

• TLB modify exception, attempt to write to a read-only page

– TLB Load

8

– TLB Load

• Attempt it load from a page with an invalid translation

– TLB Store

• Attempt to store to a page with an invalid translation

– Note: these can be slower as they are mostly either caused by
an error, or non-resident page.

• We never optimise for errors, and page-loads from disk dominate
the fault resolution cost.

<Intermezzo>

Amdahl’s law

• States that overall performance

improvement is limited by the fraction of improvement is limited by the fraction of

time an enhancement can be used

Law of diminishing returns

50

fraction in enhanced mode = 0.5 (based on old system)

Speedup of enhanced mode = 2

50 50 25

Timeold Timenew

⇒

Amdahl’s law

• States that overall performance

improvement is limited by the fraction of

ancementimeWithEnhExecutionT

tEnhancemenimeWithoutExecutionT
Speedup =

improvement is limited by the fraction of

time an enhancement can be used

</Intermezzo>

c0 Registers

• c0_EPC
– The address of where to restart after the exception

• c0_status
– Kernel/User Mode bits, Interrupt control

• c0_cause

13

• c0_cause
– What caused the exception

• c0_badvaddr
– The address of the fault

The TLB and EntryHi,EntryLo

c0_EntryHi

c0_EntryLo EntryHi EntryLo

EntryHi EntryLo

Each TLB entry

TLBc0 Registers

c0_Index

14

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo

EntryHi EntryLo
Each TLB entry

contains

• EntryHi to match

page# and ASID

•EntryLo which

contains frame#

and protection

Used to read

and write

individual TLB

entries

c0_Index

c0 Registers

15

• N = Not cacheable

• D = Dirty = Write protect

• G = Global (ignore ASID

in lookup)

• V = valid bit

• 64 TLB entries

• Accessed via software through
Cooprocessor 0 registers

– EntryHi and EntryLo

c0 Index Register

• Used as an index to TLB entries

– Single TLB entries are manipulated/viewed through

EntryHi and EntryLo0

– Index register specifies which TLB entry to

change/view

16

change/view

Special TLB management

Instructions
• TLBR

– TLB read

• EntryHi and EntryLo are loaded from the entry pointer to by the
index register.

• TLBP
– TLB probe

17

– TLB probe

– Set EntryHi to the entry you wish to match, index register is
loaded with the index to the matching entry

• TLBWR
– Write EntryHi and EntryLo to a psuedo-random location in the
TLB

• TLBWI
– Write EntryHi and EntryLo to the location in the TLB pointed to
by the Index register.

Cooprocessor 0 registers on a

refill exception
c0.EPC← PC

c0.cause.ExcCode← TLBL ; if read fault

c0.cause.ExcCode← TLBS ; if write fault

c0.BadVaddr← faulting address

18

c0.BadVaddr← faulting address

c0.EntryHi.VPN← faulting address

c0.status← kernel mode, interrupts disabled.

c0.PC← 0x8000 0000

Outline of TLB miss handling

• Software does:
– Look up PTE corresponding to the faulting address

– If found:
• load c0_EntryLo with translation

• load TLB using TLBWR instructions

19

• load TLB using TLBWR instructions

• return from exception

– Else, page fault

• The TLB entry (i.e. c0_EntryLo) can be:
– created on the fly, or

– stored completely in the right format in page table
• more efficient

OS/161 Refill Handler

• After switch to kernel stack, it simply calls the common

exception handler

– Stacks all registers

– Can (and does) call ‘C’ code

– Unoptimised

20

– Unoptimised

– Goal is ease of kernel programming, not efficiency

• Does not have a page table

– It uses the 64 TLB entries and then panics when it runs out.

• Only support 256K user-level address space

Demand

Paging/Segmentation

21

Paging/Segmentation

Demand Paging/Segmentation

• With VM, only parts of the program image need to be

resident in memory for execution.

• Can transfer presently unused pages/segments to disk

• Reload non-resident pages/segment on demand.

– Reload is triggered by a page or segment fault

22

– Reload is triggered by a page or segment fault

– Faulting process is blocked and another scheduled

– When page/segment is resident, faulting process is restarted

– May require freeing up memory first

• Replace current resident page/segment

• How determine replacement “victim”?

– If victim is unmodified (“clean”) can simply discard it

• This is reason for maintaining a “dirty” bit in the PT

• Why does demand paging/segmentation work?

– Program executes at full speed only when accessing

the resident set.

– TLB misses introduce delays of several microseconds

– Page/segment faults introduce delays of several

milliseconds

– Why do it?

23

– Why do it?

• Answer

– Less physical memory required per process

• Can fit more processes in memory

• Improved chance of finding a runnable one

– Principle of locality

Principle of Locality

• An important observation comes from empirical
studies of the properties of programs.
– Programs tend to reuse data and instructions they
have used recently.

– 90/10 rule

24

– 90/10 rule
"A program spends 90% of its time in 10% of its code"

• We can exploit this locality of references

• An implication of locality is that we can
reasonably predict what instructions and data a
program will use in the near future based on its
accesses in the recent past.

• Two different types of locality have been

observed:

– Temporal locality: states that recently accessed items

are likely to be accessed in the near future.

– Spatial locality: says that items whose addresses are

25

– Spatial locality: says that items whose addresses are

near one another tend to be referenced close

together in time.

Locality In A Memory-Reference Pattern

26

Working Set
• The pages/segments required by an application in a time
window (∆)is called its memory working set.

• Working set is an approximation of a programs’ locality
– if ∆ too small will not encompass entire locality.

– if ∆ too large will encompass several localities.

– if ∆ = ∞ ⇒ will encompass entire program.

– ∆’s size is an application specific tradeoff

27

– ∆’s size is an application specific tradeoff

• System should keep resident at least a process’s
working set
– Process executes while it remains in its working set

• Working set tends to change gradually
• Get only a few page/segment faults during a time window

• Possible to make intelligent guesses about which pieces will be
needed in the future

– May be able to pre-fetch page/segments

Working Set Model

28

∆

Thrashing

• CPU utilisation tends to increase with the degree of
multiprogramming
– number of processes in system

• Higher degrees of multiprogramming – less memory
available per process

29

• Some process’s working sets may no longer fit in RAM
– Implies an increasing page fault rate

• Eventually many processes have insufficient memory
– Can’t always find a runnable process

– Decreasing CPU utilisation

– System become I/O limited

• This is called thrashing.

Thrashing

30

• Why does thrashing occur?

Σ working set sizes > total physical memory size

Recovery From Thrashing

• In the presence of increasing page fault
frequency and decreasing CPU utilisation
– Suspend a few processes to reduce degree of
multiprogramming

– Resident pages of suspended processes will migrate

31

– Resident pages of suspended processes will migrate
to backing store

– More physical memory becomes available
• Less faults, faster progress for runnable processes

– Resume suspended processes later when memory
pressure eases

Quiz

• how does an IPT work?

– what is good about it?

– what is bad about it?

• what is the TLB?• what is the TLB?

– what happens on a context switch?

• what is a working set?

• what is thrashing?

What is the difference?

/* reset array */

int array[10000][10000];

int i,j;

for (i = 0; i < 10000; i++) {

for (j = 0; j < 10000;j ++) {

Array[a][b]

b

a

33

array[i][j] = 0;

/* array[j][i] = 0 */

}

}

VM Management Policies

34

VM Management Policies
• Operation and performance of VM system is
dependent on a number of policies:
– Page table format (my be dictated by hardware)

• Multi-level

• Hashed

– Page size (may be dictated by hardware)

35

– Page size (may be dictated by hardware)

– Fetch Policy

– Replacement policy

– Resident set size
• Minimum allocation

• Local versus global allocation

– Page cleaning policy

– Degree of multiprogramming

Page Size

Increasing page size

� Increases internal fragmentation
� reduces adaptability to working set size

� Decreases number of pages
� Reduces size of page tables

36

� Reduces size of page tables

� Increases TLB coverage
� Reduces number of TLB misses

� Increases page fault latency
� Need to read more from disk before restarting process

� Increases swapping I/O throughput
� Small I/O are dominated by seek/rotation delays

� Optimal page size is a (work-load dependent) trade-off.

Atlas 512 words (48-bit)

Honeywell/Multics 1K words (36-bit)

IBM 370/XA 4K bytes

DEC VAX 512 bytes

IBM AS/400 512 bytes

Intel Pentium 4K and 4M bytes

ARM 4K and 64K bytes

37

ARM 4K and 64K bytes

MIPS R4000 4k – 16M bytes in powers of 4

DEC Alpha 8K - 4M bytes in powers of 8

UltraSPARC 8K – 4M bytes in powers of 8

PowerPC 4K bytes + “blocks”

Intel IA-64 4K – 256M bytes in powers of 4

Page Size

• Multiple page sizes provide flexibility to

optimise the use of the TLB

• Example:

– Large page sizes can be use for code

38

– Large page sizes can be use for code

– Small page size for thread stacks

• Most operating systems support only a

single page size

– Dealing with multiple page sizes is hard!

Fetch Policy

• Determines when a page should be brought into
memory
– Demand paging only loads pages in response to page
faults
• Many page faults when a process first starts

– Pre-paging brings in more pages than needed at the

39

– Pre-paging brings in more pages than needed at the
moment
• Improves I/O performance by reading in larger chunks

• Pre-fetch when disk is idle

• Wastes I/O bandwidth if pre-fetched pages aren’t used

• Especially bad if we eject pages in working set in order to
pre-fetch unused pages.

• Hard to get right in practice.

15

14

13

12

11

10

9

8

14

10

Page fault on

page 14, physical

memory full, which

page should we

evict?

Replacement

Policy

40

7

6

5

4

3

2

1

0

Physical Address

Space

7

6

5

3

1

0

8 10

4

2

Disk

Virtual

Memory

evict?

Replacement Policy

• Which page is chosen to be tossed out?
– Page removed should be the page least likely to be
references in the near future

– Most policies attempt to predict the future behaviour
on the basis of past behaviour

41

on the basis of past behaviour

• Constraint: locked frames
– Kernel code

– Main kernel data structure

– I/O buffers

– Performance-critical user-pages (e.g. for DBMS)

• Frame table has a lock bit

Optimal Replacement policy

• Toss the page that won’t be used for the longest
time

• Impossible to implement

• Only good as a theoretic reference point:
– The closer a practical algorithm gets to optimal, the

42

– The closer a practical algorithm gets to optimal, the
better

• Example:
– Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

– Four frames

– How many page faults?

FIFO Replacement Policy

• First-in, first-out: Toss the oldest page

– Easy to implement

– Age of a page is isn’t necessarily related to
usage

43

• Example:

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

– Four frames

– How many page faults?

– Three frames?

FIFO Replacement Policy

• First-in, first-out: Toss the oldest page

– Easy to implement

– Age of a page is isn’t necessarily related to
usage

44

• Example:

– Reference string: 1,2,3,4,1,2,5,1,2,3,4,5

– Four frames

– How many page faults?

– Three frames?

Belady’s Anomaly

• For FIFO, more frames does not imply

fewer page faults

45

Least Recently Used (LRU)

• Toss the least recently used page

– Assumes that page that has not been referenced for a

long time is unlikely to be referenced in the near

future

– Will work if locality holds

46

– Will work if locality holds

– Implementation requires a time stamp to be kept for

each page, updated on every reference

– Impossible to implement efficiently

– Most practical algorithms are approximations of LRU

Clock Page Replacement

• Clock policy, also called second chance

– Employs a usage or reference bit in the frame

table.

– Set to one when page is used

47

– Set to one when page is used

– While scanning for a victim, reset all the

reference bits

– Toss the first page with a zero reference bit.

Assume a page

fault on page 727

Issue

• How do we know when a page is referenced?

• Use the valid bit in the PTE:

– When a page is mapped (valid bit set), set the

reference bit

51

– When resetting the reference bit, invalidate the PTE

entry

– On page fault

• Turn on valid bit in PTE

• Turn on reference bit

• We thus simulate a reference bit in software

Performance

• It terms of selecting the most appropriate

replacement, they rank as follows

1. Optimal

2. LRU

52

3. Clock

4. FIFO

– Note there are other algorithms (Working Set,

WSclock, Ageing, NFU, NRU)

– We don’t expect you to know them in this course

Resident Set Size

• How many frames should each process have?

– Fixed Allocation

• Gives a process a fixed number of pages within which to

execute.

• When a page fault occurs, one of the pages of that process

53

• When a page fault occurs, one of the pages of that process

must be replaced.

• Achieving high utilisation is an issue.

– Some processes have high fault rate while others don’t use

their allocation.

– Variable Allocation

• Number of pages allocated to a process varies over the

lifetime of the process

Variable Allocation, Global Scope

– Easiest to implement

– Adopted by many operating systems

– Operating system keeps global list of free frames

– Free frame is added to resident set of process when a

page fault occurs

54

page fault occurs

– If no free frame, replaces one from any process

• Pro/Cons

– Automatic balancing across system

– Does not provide guarantees for important

activities

Variable Allocation, Local Scope

• Allocate number of page frames to a new process based
on
– Application type

– Program request

– Other criteria (priority)

• When a page fault occurs, select a page from among the

55

• When a page fault occurs, select a page from among the
resident set of the process that suffers the page fault

• Re-evaluate allocation from time to time!

Page-Fault Frequency Scheme

56

• Establish “acceptable” page-fault rate.

– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Cleaning Policy

• Observation
– Clean pages are much cheaper to replace than dirty pages

• Demand cleaning
– A page is written out only when it has been selected for
replacement

– High latency between the decision to replace and availability of

57

– High latency between the decision to replace and availability of
free frame.

• Precleaning
– Pages are written out in batches (in the background, the

pagedaemon)

– Increases likelihood of replacing clean frames

– Overlap I/O with current activity

Load Control (Degree of

multiprogramming)
• Determines the number of runnable processes

• Controlled by:

– Admission control

• Only let new process’s threads enter ready state if enough memory

is available

58

– Suspension:

• Move all threads of some process into a special suspended state

• Swap complete process image of suspended process to disk

• Trade-off

– Too many processes will lead to thrashing

– Too few will lead to idle CPU

Load Control Considerations

59

• Can use page fault frequency.

